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A The Proposed TERIAL Approach
A.1 The Pseudo-Code of TERIAL

The complete procedure of TERIAL is summarized in Table
4.

A.2 Theoretical Analysis for the Neighborhood
Routing Mechanism

In this section, we analyse two essential issues about the
proposed neighborhood routing mechanism: (1) Is it conver-
gent? (2) If it is, then what solution will it converge to? We
simultaneously address the above problems based on the von
Mises-Fisher (vMF) mixture model from an expectation-
maximization (EM) perspective.

Given the observation {wuk
}Kk=1 and {wvk : v ∈

Nu}Kk=1, the vMF mixture model with parameters {cuk
}Kk=1

is defined as:

wuk
∼ vMF(cuk

, 1),

rv ∼ Categorical([
1

K
, ...,

1

K
]︸ ︷︷ ︸

K

),

wvrv
|rv ∼ vMF(curv

,
1

τ
),

wvk′ |rv ∼ vMF(µ, 0), k′ ̸= rv.

The variable rv denotes the latent factor that contributes
to the connection between node u and node v. The mix-
ture model’s parameters {cuk

}Kk=1 are viewed as K true as-
pects of node u to be estimated and the observed features
{wuk

}Kk=1 are treated as their noisy observation. We assume
that wurv

should be similar with wvrv
if node u and its

neighbor v are connected due to the latent factor rv . For
chunks associated with non-explanatory factors k′ ̸= rv ,
we have limited information about their representation. As
a result, we assume that wvk′ are sampled uniformly, i.e.,
sampled from vMF(µ, 0). 1
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1The probability density function of vMF(µ, κ) is defined as
pvMF(x;µ, κ) ∝ exp(κ · µ⊤x). Since pvMF(x;µ, 0) is constant,
vMF(µ, 0) could be viewed as a uniform distribution.

Based on the above vMF mixture model, we deduce The-
orem 1 in the main paper and provide its proof here.
Proof of Theorem 1. Let Θ = {cuk

}Kk=1, R = {rv :
v ∈ Nu}, and Z = {wik : i ∈ {u} ∪ Nu, 1 ⩽ k ⩽
K}. The objective of an EM algorithm is to maximize
p(Z; Θ) =

∑
R p(R,Z; Θ). Usually, it is required to in-

troduce an auxiliary distribution q(R) over R to approxi-
mate the posterior p(R|Z; Θ). Then the log-likelihood func-
tion is formulated as ln p(Z; Θ) =

∑
R q(R) ln p(R,Z;Θ)

q(R) +∑
R q(R) ln q(R)

p(R|Z;Θ) . Let L(Θ, q) =
∑

R q(R) ln p(R,Z;Θ)
q(R)

and DKL(q∥pΘ) denote the Kullback-Leibler (KL) diver-
gence from p(R|Z; Θ) to the auxiliary distribution q(R).
Then the objective function is simplified as ln p(Z; Θ) =
L(Θ, q) + DKL(q∥pΘ). Since the KL divergence is non-
negative, L(Θ, q) is a lower bound of ln p(Z; Θ).

The EM algorithm typically consists of an expectation (E)
step and a maximization (M) step. In the E-step, the aux-
iliary distribution q(R) is set to p(R|Z; Θ) using the cur-
rent estimate of the parameters to tight the lower bound
of L(Θ, q). Note that p(R|Z; Θ) =

∏
v p(rv|Z; Θ) and

p(rv = k|Z; Θ) ∝ p(rv = k, Z; Θ) ∝ exp(w⊤
vk
cuk

/τ).
As a result, the optimal q(R) in each iteration is set as
q(rv = k) ∝ exp(w⊤

vk
cuk

/τ), which proves that Eq.(5)
is actually equivalent to the E-step in the EM algorithm.

In the M-step, with q(R) fixed to the values determined in
the E-step, the lower bound L(Θ, q) is maximized w.r.t pa-
rameters Θ under the constrains that c⊤uk

cuk
= 1(1 ⩽ k ⩽

K). We construct the Lagrange function L = L(Θ, q) +∑K
k=1 λk(1 − c⊤uk

cuk
) with Lagrange multipliers λk(1 ⩽

k ⩽ K). Taking partial derivatives of L with respect to
{cuk

}Kk=1 and setting them to zero, we get that cuk
=

wuk
+
∑

v∈Nu
pk(t−1)
u,v wvk

2λk
(Banerjee et al. 2005). Accordingly,

considering c⊤uk
cuk

= 1, the optimal cuk
is derived exactly

as Eq.(4). This proves that Eq.(4) is actually performing the
M-step in the EM algorithm.

Let q(t)(R) denote the refined distribution in the tth E-
step and Θ(t) denote the updated parameters in the tth M-
step respectively. Then we have that ln p(Z; Θ(t−1)) =
L(Θ(t−1), q) + DKL(q∥pΘ(t−1)) = L(Θ(t−1), q(t)) ⩽
L(Θ(t), q(t)) ⩽ L(Θ(t), q(t)) + DKL(q

(t)∥pΘ(t)) =
ln p(Z; Θ(t)). This proves that the likelihood increases



Inputs:
D : the PL training set {(xi, Si) | 1 ⩽ i ⩽ n} (X

= Rd,Y = {l1, l2, . . . , lq},xi ∈ X , Si ⊆ Y)

L : the number of disentangling layers
K : the assumed number of latent factors
fk(·) : the mapping functions (1 ⩽ k ⩽ K)

τ : the smooth factor in Eq.(3)
T : the maximum number of iterations for the

clustering procedure
α : the balancing factor in Eq.(6)
Emax : the number of epochs
Imax : the number of iterations in each epoch
x′ : the unseen instance
Outputs:
l∗ : the predicted label for x′

Process:

1: Initialize the n×q labeling confidence matrix Y accord-
ing to Eq.(1);

2: Initialize embeddings of labels;
3: for ep = 1 to Emax do
4: for i = 1 to Imax do
5: Fetch a random batch D′ from D;
6: Formulate the batch D′ as an undirected bipartite

graph, where an instance is only connected to its
candidate labels;

7: Derive the representation of instance nodes accord-
ing to Eq.(2);

8: for l = 1 to L do
9: Initialize correlation coefficients pku,v according

to Eq.(3);
10: for t = 1 to T do
11: For nodes in the graph, respectively derive the

temporary clustering centers c(t)uk according to
Eq.(4);

12: Update the correlation coefficients p
k(t)
u,v ac-

cording to Eq.(5);
13: end for
14: Assign the representation of nodes in the graph

according to Eq.(6);
15: end for
16: Alternatively minimize the empirical loss L1 =

Lce or L2 = Lce + Lind according to Eq.(7) and
Eq.(9);

17: Update the mapping functions and label embed-
dings;

18: Update the labeling confidence matrix Y accord-
ing to Eq.(10);

19: end for
20: end for
21: Derive the disentangled representation of unseen in-

stance x′ according to obtained mapping functions;
22: Make the prediction l∗ by computing the inner product

between derived disentangled representation of the un-
seen instance and label embeddings;

Table 4: The pseudo-code of TERIAL.

monotonically during iterations, which is upper-bounded by
zero. Accordingly, we could conclude that the algorithm
converges.

B Experiments on Benchmark Datasets
In this paper, all algorithms are implemented with PyTorch
(Paszke et al. 2019) and trained on 1 NVIDIA Tesla V100
GPU (32GB).

B.1 Descriptions of Datasets
In this paper, five popular benchmark datasets are used to
generate synthetic PL datasets:

• MNIST (LeCun et al. 1998): It is a 10-class dataset of
handwritten digits, where each instance is a 28 × 28
grayscale image and the classes vary from 0 to 9. It has
60000 training examples and 10000 testing examples.

• Kuzushiji-MNIST (Clanuwat et al. 2018): It is a 10-class
dataset of Japanese characters, where each instance is a
28× 28 grayscale image. It has 60000 training examples
and 10000 testing examples.

• Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017): It is
a 10-class dataset of fashion items, where each instance
is a 28 × 28 grayscale image and the classes include
T-shirt/top, trouser, pullover, dress, sandal, coat, shirt,
sneaker, bag, and ankle boot. It has 60000 training ex-
amples and 10000 testing examples.

• SVHN (Netzer et al. 2011): It is a 10-class dataset from
Google Street View images, where each instance is a 32×
32×3 colored image in RGB format and the classes vary
from 0 to 9. It has 73257 training examples and 26032
testing examples.

• CIFAR-10 (Krizhevsky, Hinton et al. 2009): It is a 10-
class dataset, where each instance is a 32 × 32 × 3 col-
ored image in RGB format and the classes include air-
plane, bird, automobile, cat, deer, frog, dog, horse, ship,
and truck. It has 50000 training examples and 10000 test-
ing examples.

B.2 Descriptions of Comparing Methods
For benchmark datasets, the comparing algorithms include:

• PRODEN (Lv et al. 2020): It progressively identifies the
true label from candidate labels through approximately
minimizing a risk estimator.

• RC (Feng et al. 2020): It is a novel risk-consistent partial
label learning approach based on the generation model.

• CC (Feng et al. 2020): It is a novel classifier-consistent
partial label learning approach based on the generation
model.

• LW (Wen et al. 2021): It proposes a family of loss func-
tions and introduces the leverage parameter β to consider
the trade-off between losses on partial labels and non-
partial labels.

• VALEN (Xu et al. 2021): It makes the first attempt to-
wards instance-dependent PLL and applies the proba-
bilistic model to iteratively recover label distribution for
each instance.



TERIAL against comparing algorithms
PRODEN RC CC LW VALEN CAVL

r = 3 4/1/0 4/1/0 5/0/0 5/0/0 5/0/0 5/0/0
r = 5 5/0/0 5/0/0 5/0/0 5/0/0 5/0/0 5/0/0
r = 7 4/0/1 4/0/1 5/0/0 5/0/0 5/0/0 5/0/0

In Total 13/1/1 13/1/1 15/0/0 15/0/0 15/0/0 15/0/0

Table 5: Win/tie/loss counts (pairwise t-test at 0.05 significance level) between TERIAL and comparing algorithms in terms of
different number of false positive labels (r = 3, 5, 7).

MNIST KMNIST FMNIST SVHN CIFAR-10
Ours 92.89±0.16% 67.03±0.19% 81.62±0.08% 92.95±0.17% 49.50±0.34%

PRODEN 92.31±0.22% • 63.98±0.27% • 77.09±0.14% • 92.13±0.31% • 52.95±0.37% ◦
RC 92.42±0.32% • 64.28±0.14% • 77.35±0.24% • 92.42±0.25% 52.75±0.27% ◦
CC 92.22±0.25% • 63.74±0.22% • 76.84±0.12% • 89.99±0.16% • 49.11±0.13%
LW 91.76±0.17% • 62.92±0.13% • 75.94±0.28% • 87.97±0.33% • 45.19±0.26% •

VALEN 89.32±0.45% • 59.37±0.43% • 72.12±0.43% • 83.27±0.13% • 37.49±0.56% •
CAVL 92.58±0.12% • 63.10±0.38% • 79.26±0.19% • 91.69±0.27% • 45.57±0.13% •

Table 6: Classification accuracy (mean±std) of each comparing algorithm on instance-dependent benchmark datasets, where
•/◦ indicates whether TERIAL is statistically superior/inferior to the comparing approach on each dataset (pairwise t-test at
0.05 significance level). The best result among methods is highlighted in bold.

• CAVL (Zhang et al. 2022): It identifies the true label by
the class with the maximum class activation value.

B.3 Results of Pairwise t-test on Corrupted
Benchmark Datasets

The pairwise t-test at 0.05 significance level is conducted to
show whether the performance difference between TERIAL
and comparing algorithms is significant, where the resulting
win/tie/lose counts are reported in Table 5.

B.4 Results on Instance-dependent Benchmark
Datasets

Instance-dependent PL datasets (Qiao, Xu, and Geng 2023;
Wu, Wang, and Zhang 2022) are generated according to the
same strategy utilized in (Xu et al. 2021), which made the
first attempt towards instance-dependent PLL. Specifically,
given an instance x, the flipping probability of each incor-
rect label is derived from qj(x) =

ĥj(x)∑
k∈Y ĥk(x)

, where ĥ(·)
denotes a pre-trained neural network. The predictive perfor-
mance (mean±std) of comparing algorithms on instance-
dependent benchmark datasets are reported in Table 6,
where •/◦ indicates whether TERIAL is statistically superi-
or/inferior to the comparing approach on each dataset (pair-
wise t-test at 0.05 significance level). The best result among
methods is highlighted in bold.

C Experiments on Real-World Datasets
Datasets. In this paper, four real-world PL datasets are uti-
lized to evaluate the effectiveness of our proposed approach,
including:
• Lost (Cour, Sapp, and Taskar 2011): It is a dataset for

automatic face naming from images or videos, where in-
stances correspond to faces cropped from an image or

video frame while candidate labels correspond to names
extracted from the associated captions or subtitles.

• English (Zhou et al. 2018), Malagasy (Garrette and
Baldridge 2013) and Italian (Zhou et al. 2018): They are
the datasets for part-of-speech (POS) tagging, where in-
stances correspond to the target words with contextual
features while candidate labels correspond to the part-of-
speech tags that the target words may have.

Characteristics of these datasets are shown in Table 7.
Comparing methods. Aforementioned DNN based meth-
ods are also applied here on real-world datasets employing
linear model as backbones. Other settings are the same as
before. In addition, we add five classical PLL approaches
for comparison, each configured with parameters suggested
in respective literatures:

• PL-kNN (Hüllermeier and Beringer 2006): An
averaging-based partial label learning algorithm. It
makes prediction on unseen instance by hiring weighted
kNN voting strategy [suggested configuration: k=10].

• PL-SVM (Nguyen and Caruana 2008): An identification-
based partial label learning algorithm. It learns the pre-
dictive model by maximizing the classification margin
over candidate label set and non-candidate label set [sug-
gested configuration: regularization parameter pool with
{10−3, . . . , 103}].

• PL-ECOC (Zhang, Yu, and Tang 2017): A
transformation-based partial label learning algo-
rithm. It learns the predictive model by decomposing
the PL learning problem into a group of binary learning
problems through adapting the error-correcting output
codes (ECOC) techniques [suggested configuration:
ECOC coding length ⌈10 · log2(q)⌉].



Data Set # Examples # Features # Class Labels average # Candidate Labels Task Domain
Lost 1,122 108 16 2.23 automatic face naming

English 24,000 300 45 1.19 POS tagging
Malagasy 5,303 384 44 8.35 POS tagging

Italian 21,878 518 90 1.60 POS tagging

Table 7: Characteristics of the real-world PL datasets.

• IPAL (Zhang and Yu 2015): An instance-based partial
label learning algorithm. It learns the predictive model
by adapting label propagation for graph-based disam-
biguation [suggested configuration: balancing parameter
α = 0.95].

• SURE (Feng and An 2019): A self-training partial la-
bel learning algorithm. It learns the desired model and
performs pseudo-labeling jointly by solving a tailored
convex-concave optimization problem [suggested con-
figuration: regularization parameters λ = 0.3, β = 0.05].

For TERIAL, the assumed number of latent factors K are
set as: K = 9 on Lost, K = 10 on English, K = 12 on
Malagasy, K = 14 on Italian. We perform five-fold cross-
validation on real-world datasets and report the average ac-
curacy with the standard deviation for each comparing algo-
rithm.
Empirical Results. The predictive performance (mean±std)
of comparing algorithms on real-world datasets are reported
in Table 8. In addition, •/◦ indicates whether TERIAL is
statistically superior/inferior to the comparing approach on
each dataset (pairwise t-test at 0.05 significance level). It
could be observed that TERIAL achieves superior perfor-
mance against other comparing methods in most cases. The
only losses occur on the dataset of Malagasy, which not only
has a small amount of data, but also has the largest average
number of candidate labels, making it difficult for TERIAL
to give full play to its skills.

D Further Studies
D.1 Impact of Parameters α and T

The learning rate α and the maximum number of iterations
T are key hyper-parameters for the routing mechanism. Here
we investigate their impact on TERIAL’s predictive perfor-
mance. The results on the datasets of KMNIST (r = 7) and
CIFAR-10 (r = 3) are illustrated in Fig. 2. Overall, the clas-
sification accuracy fluctuates moderately as the values of α
and T change. For different datasets, fine-tuning these two
parameters might lead to performance improvement, while
α = 0.6 and T = 6 is a reasonable default setting in this
paper.

D.2 Impact of Independence Modeling

The performance of TERIAL with(w/) or without(w/o) the
independence modeling module on benchmark datasets cor-
rupted by the instance-dependent strategy is reported in Ta-
ble 9.

(a) KMNIST (r = 7) (b) CIFAR-10 (r = 3)

Figure 2: Impact of learning rate α and the number of itera-
tions T on classification performance of TERIAL on datasets
of KMNIST (r = 7) and CIFAR-10 (r = 3).
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(b) TERIAL

Figure 3: t-SNE visualization of representation produced by
RC and TERIAL on the test dataset of SVHN(r = 5).

E Visualization
In Fig. 3, we visualize the representation produced by
TERIAL and RC on the test dataset of SVHN(r = 5).
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