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ABSTRACT

Partial label learning induces a multi-class classifier from train-
ing examples each associated with a candidate label set where the
ground-truth label is concealed. Feature selection improves the gen-
eralization ability of learning system via selecting essential features
for classification from the original feature set, while the task of par-
tial label feature selection is challenging due to ambiguous labeling
information. In this paper, the first attempt towards partial label
feature selection is investigated via mutual-information-based de-
pendency maximization. Specifically, the proposed approach Saute
iteratively maximizes the dependency between selected features
and labeling information, where the value of mutual information is
estimated from confidence-based latent variable inference. In each
iteration, the near-optimal features are selected greedily according
to properties of submodular mutual information function, while the
density of latent label variable is inferred with the help of updated
labeling confidences over candidate labels by resorting to 𝑘NN
aggregation in the induced lower-dimensional feature space. Exten-
sive experiments over synthetic as well as real-world partial label
data sets show that the generalization ability of well-established
partial label learning algorithms can be significantly improved after
coupling with the proposed feature selection approach.
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1 INTRODUCTION

As an emerging weakly-supervised learning framework, partial
label (PL) learning aims to learn a multi-class classifier from am-
biguous examples where each instance is associated with a set of
candidate labels, among which only one is valid [10, 34, 60]. Owing
to the ability of directly dealing with inaccurate supervision infor-
mation [63], partial label learning has been successfully applied
in many real-world application domains where collecting accu-
rately labeled data is difficult and costly, such as web mining [23],
multimedia content analysis [8, 57], ecoinformatics [5, 50], natural
language processing [62], etc.

Although learning from ambiguously labeled examples greatly
reduces the cost of data annotation, the generalization performance
of partial label classification model is usually less satisfactory due
to the limited supervision information retrieved from training set.
Endowed with the strength of improving the generalization abil-
ity of learning system, dimensionality reduction mechanisms are
expected to be incorporated into partial label learning. Dimension-
ality reduction can be generally divided into two categories: feature
transformation and feature selection. Contrasting to feature trans-
formation which maps the original high-dimensional feature vector
into a meaningful representation in the induced lower-dimensional
feature space [15, 16, 29, 54], feature selection performs dimen-
sionality reduction via identifying the most informative feature
subset of the observed data, which is capable of removing irrel-
evant and redundant features, increasing learning accuracy and
enhancing learning comprehensibility [7, 19, 26]. To the best of
our knowledge, Delin [53, 58] and Cenda [2] are the only two
available feature-transformation-based partial label dimensionality
reduction approaches which induce the lower-dimensional feature
space by adapting the Linear Discriminant Analysis (LDA) technique
and the Hilbert-Schmidt Independence Criterion (HSIC) respectively,
while the problem of selecting the most informative feature subset
from partial label examples has not been well investigated.

In this paper, we propose a novel partial label feature selec-
tion method named Saute, i.e. SubmodulAr featUre selecTion for
partial labEl learning. Saute performs feature selection via maxi-
mizing the dependency between selected feature variables and the
latent label variable, which is evaluated by mutual information.
Since the ground-truth label is not accessible during the learning
procedure, the density of latent label variable which is essential
for the computation of mutual information is estimated with the
help of iteratively-updated labeling confidences over candidate la-
bels. In each iteration, superior features are selected by a greedy



scheme according to the properties of submodular function, while
the density of latent label variable is further estimated from updated
labeling confidences by resorting to 𝑘NN aggregation in the lower-
dimensional space induced by selected features. Comprehensive
experiments over synthetic and real-world partial label data sets
show that Saute serves as an effective feature selection approach to
improve the generalization ability of well-established partial label
learning algorithms.

The rest of this paper is organized as follows. Section 2 briefly
reviews related works on partial label learning. Section 3 presents
technical details of the proposed Saute approach. Section 4 reports
experimental results over a broad range of partial label data sets.
Finally, section 5 concludes this paper.

2 RELATEDWORKS

Partial label learning induces a multi-class classifier from ambigu-
ously labeled training examples each associated with a candidate
label set, where the ground-truth label is concealed. To learn from
partial label examples, most existing works adopt the strategy of
candidate label disambiguation to reveal the ground-truth labeling
information. Identification-based disambiguation treats the ground-
truth label as latent variable and utilizes iterative optimization
procedure to estimate the value of latent variable, where the opti-
mization objective can be instantiated with different methods such
as maximum likelihood criterion [24, 30, 31] or maximum margin
criterion [6, 33, 56]. Averaging-based disambiguation treats all can-
didate labels equally and yields the final prediction via modifying
their modeling outputs according to different averaging strategies,
such as distinguishing the averaged modeling outputs from can-
didate labels between the modeling outputs from non-candidate
labels for discriminative models [10, 44, 48] , or aggregating the
votes among candidate labels of the unseen instance’s neighboring
examples for instance-based models [17, 22, 59].

As the fundamental approach to alleviating the issue of curse of
dimensionality, dimensionality reduction [20, 38, 40, 49] has been
studied extensively and is expected to significantly improve the
generalization ability of the learning system. A number of advanced
feature-transformation-based and feature-selection-based dimen-
sionality reduction techniques have been introduced into weakly-
supervised learning frameworks such as semi-supervised learning
[41, 51], multi-instance learning [47, 52] and multi-label learning
[45, 46, 61] to improve their less satisfactory generalization perfor-
mance caused by limited supervision information retrieved from
training set. Nevertheless, for partial label learning, most existing
works focus on classification model induction by disambiguating
the candidate label set while the task of manipulating the feature
space by dimensionality reduction has been rarely investigated.

To the best of our knowledge, there are only two available feature-
transformation-based partial label dimensionality reduction meth-
ods, namely Delin [53, 58] and Cenda [2], while the application
of feature selection [7, 19, 26] which not only facilitates removing
irrelevance and redundancy in the feature space, but also brings
about the advantages of interpretability and efficiency, has not been
well studied in partial label learning framework. Delin utilizes the
LDA technique to maximize the inter-class separability in the pro-
jected feature space, whose dimensionality is upper-bounded by

the number of class labels due to the intrinsic properties of LDA.
Cenda adapts HSIC to assist maximizing the dependence between
the projected feature information and the confidence-based label-
ing information. The above methods both assume the existence of
a meaningful and computable distance metric in the input space,
which brings extra bias to the learning procedure and might lead
to suboptimal performance with inappropriate metric assumption.

3 THE PROPOSED APPROACH

Let X = R𝑑 and L = {𝑙1, 𝑙2, ..., 𝑙𝑞} denote the 𝑑-dimensional in-
stance space and the label space with 𝑞 class labels respectively.
Given the partial label training set D = {(𝒙𝑖 , 𝑆𝑖 ) |1 ⩽ 𝑖 ⩽ 𝑚} ,
where 𝒙𝑖 ∈ X is a 𝑑-dimensional feature vector (𝑥𝑖1 , 𝑥𝑖2 , ..., 𝑥𝑖𝑑 )⊤
and 𝑆𝑖 ⊆ L is the candidate label set associated with 𝒙𝑖 , partial
label learning aims to derive a multi-class classifier ℎ : X → L
from the training set D.

Let 𝐹 = {𝑓1, ..., 𝑓𝑑 } denote the original feature set and latent
variable 𝑐 denote the unknown ground-truth label of the instance.
The task of partial label feature selection is trying to select a subset
𝐴( |𝐴| = 𝑑 ′, 𝑑 ′ ≪ 𝑑) from original features, i.e., 𝐴 ⊆ 𝐹 , which is
recognized as the essential features of the instances. These essential
features commonly have the maximal statistical dependency on
the target class 𝑐 [36]. Therefore, Saute performs feature selection
via maximizing the dependency between selected features 𝐴 and
labeling information represented by random variable c, which is
evaluated by mutual information in this paper, as mutual informa-
tion is widely employed to define the dependency of random vari-
ables [4, 13]. Besides, maximizing the mutual information 𝐼 (𝐴; 𝑐)
also guarantees minimizing the lower bound of the misclassifica-
tion probability of classifier according to Fano’s inequality [11].
To tackle ambiguous labeling information, Saute operates in an
iterative manner by alternating between mutual-information-based
dependency maximization and density estimation of latent label
variable. The two-stage alternating procedure is fulfilled by con-
structing labeling confidence matrix Y = [Y(𝑖, 𝑗)]𝑚×𝑞 where each
element Y(𝑖, 𝑗) represents the estimated confidence of 𝑙 𝑗 being the
ground-truth label for 𝑥𝑖 . The matrix is initialized as Eq.(1) and the
constraints

∑𝑞

𝑗=1 Y(𝑖, 𝑗) = 1(1 ⩽ 𝑖 ⩽ 𝑚) hold for each iteration of
Saute.

∀ 1 ⩽ 𝑖 ⩽ 𝑚, 1 ⩽ 𝑗 ⩽ 𝑞 : Y(𝑖, 𝑗) =
{

1
|𝑆𝑖 | , if 𝑙 𝑗 ∈ 𝑆𝑖

0, otherwise
(1)

In order to obtain a compact set of 𝑑 ′ superior features, we ex-
pect the selected features have the maximal dependency on the con-
cealed labeling information. For the stage of mutual-information-
based dependency maximization, we formulate the objective func-
tion as:

𝐴∗ = argmax
𝐴⊆𝐹, |𝐴 |=𝑑′

𝑔(𝐴) = argmax
𝐴⊆𝐹, |𝐴 |=𝑑′

𝐼 (𝐴; 𝑐) (2)

The above problem is NP-Hard in spite of its simple expres-
sion [37]. It is difficult and costly to search the best 𝑑 ′ features
exhaustively. Nevertheless, the optimization goal 𝑔(𝐴) = 𝐼 (𝐴; 𝑐) is
a non-decreasing, non-negative submodular function under weak
conditional independence assumption [27] with 𝑔(𝜙) = 0 by defi-
nition. One of the most popular consequences of submodularity is



that the maximum value of a non-negative and monotone submodu-
lar function can be effectively approximated with a tailored greedy
algorithm [32, 55]. Therefore we can obtain a near-optimal subset
of original features, i.e., the solution of Eq.(2), with theoretical per-
formance guarantees via a greedy incremental scheme according to
the properties of submodular function. In this scheme, supposing
that we already have the feature subset 𝐴𝑝−1 (1 ⩽ 𝑝 ⩽ 𝑑 ′) with
𝑝−1 selected features which is initialized as𝐴0 = 𝜙 , the 𝑝th feature
is selected from 𝐹 \𝐴𝑝−1 according to Eq.(3):

𝑓 ∗𝑝 = argmax
𝑓 ∈𝐹\𝐴𝑝−1

𝐼 (𝐴𝑝−1 ∪ {𝑓 }; 𝑐) (3)

The final selected feature subset 𝐴greedy satisfies the theoretical
performance guarantee [32] that:

𝑔(𝐴greedy) ⩾ (1 − 1
𝑒
) max
|𝐴 |=𝑑′

𝑔(𝐴) (4)

In each greedy step, the computation of mutual information
𝐼 (𝐴𝑝−1 ∪ {𝑓 }; 𝑐) involves the estimation of multivariate density
𝑝 (𝑓𝑠1 , 𝑓𝑠2 , ..., 𝑓𝑠𝑝−1 , 𝑓 ) and 𝑝 (𝑓𝑠1 , 𝑓𝑠2 , ..., 𝑓𝑠𝑝−1 , 𝑓 , 𝑐). Nevertheless, in
high-dimensional space the number of samples is usually insuf-
ficient for accurate multivariate density estimation. Moreover, com-
puting the inverse of the high-dimensional covariance matrix which
is needed for density estimation is time-consuming and usually an
ill-posed problem. In order to avoid the problems mentioned above,
we further assume that features are independent. Then we obtain
the modified greedy policy for the 𝑝th (1 ⩽ 𝑝 ⩽ 𝑑 ′) step as:

𝑓 ∗𝑝 = argmax
𝑓 ∈𝐹\𝐴𝑝−1

𝐼 (𝐴𝑝−1 ∪ {𝑓 }; 𝑐)

= argmax
𝑓 ∈𝐹\𝐴𝑝−1

(
𝐻 (𝐴𝑝−1 ∪ {𝑓 }) − 𝐻 (𝐴𝑝−1 ∪ {𝑓 }|𝑐)

)
①
= argmax

𝑓 ∈𝐹\𝐴𝑝−1

( (
𝐻 (𝐴𝑝−1) + 𝐻 (𝑓 )

)
−
(
𝐻 (𝐴𝑝−1 |𝑐) + 𝐻 (𝑓 |𝑐)

) )
②
= argmax

𝑓 ∈𝐹\𝐴𝑝−1

(𝐻 (𝑓 ) − 𝐻 (𝑓 |𝑐))

= argmax
𝑓 ∈𝐹\𝐴𝑝−1

𝐼 (𝑓 ; 𝑐) (5)

where 𝐻 (·) denotes the entropy of random variable. Here, equal-
ity ① is derived from the independence assumption. Furthermore,
equality ② is derived from the fact that 𝐻 (𝐴𝑝−1) and 𝐻 (𝐴𝑝−1 |𝑐)
are constants for the 𝑝th step.

The above derivation reduces the computational complexity from
calculating multivariate mutual information to calculating bivariate
mutual information so as to improve the calculation accuracy and
efficiency. Eq.(5) indicates that the criterion of dependency maxi-
mization is equivalent to the criterion of relevance maximization
given the independence assumption, i.e., the scheme only needs
to select the feature that has the maximal relevance with label-
ing information in each greedy step to maximize the dependency
between eventually selected features and labeling information.

Nevertheless, features generally are not independent of each
other in machine learning tasks. The above greedy policy effectively
eliminates irrelevant features while redundant information between
features is not well handled. Therefore, we attempt to make up for
deficiencies of the independence assumption and revise the greedy

policy as:

𝑓 ∗𝑝 = argmax
𝑓 ∈𝐹\𝐴𝑝−1

©«𝐼 (𝑓 ; 𝑐) − 1
|𝑆 |

∑
𝑓𝑖 ∈𝐴𝑝−1

𝐼 (𝑓 ; 𝑓𝑖 )
ª®¬ (6)

The second term in parentheses indicates that the newly selected
feature 𝑓𝑝 in each step should have minor relevance with features
already selected in 𝐴𝑝−1, which facilitates removing redundant
information in the induced feature space. Considering the fact that
𝐻 (𝑐) is a constant, we further simplify Eq.(6) as:

𝑓 ∗𝑝 = argmax
𝑓 ∈𝐹\𝐴𝑝−1

©«−𝐻 (𝑐 |𝑓 ) − 1
|𝑆 |

∑
𝑓𝑖 ∈𝐴𝑝−1

𝐼 (𝑓 ; 𝑓𝑖 )
ª®¬ (7)

Implementation Issues. For partial label examples, it is infeasible
to directly calculate the value of entropy corresponding to latent
variable 𝑐 due to the concealed ground-truth label. In this paper,
we make the first attempt to estimate conditional entropy 𝐻 (𝑐 |𝑓 )
in partial label learning framework.

For each partial label example (𝒙𝑖 , 𝑆𝑖 ) ( |𝑆𝑖 | = 𝑛𝑖 ), if Y(𝑖, 𝑗) ⩾
1
𝑛𝑖
(1 ⩽ 𝑗 ⩽ 𝑞), 𝒙𝑖 will be put into the set D𝑗 . In order to calcu-

late 𝐻 (𝑐 |𝑓 ) (∀𝑓 ∈ 𝐹 ), we assume that class-conditional probability

𝑝 (𝑓 |𝑙) ∼ 𝑁 (𝜇 𝑓
𝑙
, 𝜎

𝑓

𝑙

2
) on D𝑙 (𝑙 ∈ L) where 𝜇

𝑓

𝑙
and 𝜎

𝑓

𝑙
denote the

derived mean value and standard derivation respectively corre-
sponding to feature 𝑓 . Then 𝑝 (𝑙 |𝑓 ) can be estimated by:

𝑝 (𝑙 |𝑓 ) = 𝑝 (𝑓 |𝑙) · 𝑝 (𝑙)∑
𝑢∈L 𝑝 (𝑓 |𝑢) · 𝑝 (𝑢) (8)

where 𝑝 (𝑢) =
∑𝑚

𝑖=1 Y(𝑖,𝑢)
𝑚 (𝑢 ∈ L).

The class has discrete values while the input features are usually
continuous variables. As a result, conditional entropy 𝐻 (𝑐 |𝑓 ) is
defined by:

𝐻 (𝑐 |𝑓 ) = −
∫
X𝑓

𝑝 (𝑓 )
𝑞∑
𝑙=1

𝑝 (𝑙 |𝑓 ) log 𝑝 (𝑙 |𝑓 ) 𝑑 𝑓 (9)

We replace the integration with a summation of𝑚 training samples
and suppose each sample has the same probability [28], then𝐻 (𝑐 |𝑓 )
is estimated as:

�̂� (𝑐 |𝑓 ) = −
𝑚∑
𝑗=1

1
𝑚

𝑞∑
𝑙=1

𝑝 (𝑙 |𝑥 𝑓
𝑗
) log𝑝 (𝑙 |𝑥 𝑓

𝑗
) (10)

where 𝑥 𝑓
𝑗
is the value of the 𝑗th training sample corresponding to

feature 𝑓 .
For terms 𝐼 (𝑓 ; 𝑓𝑖 ) (𝑓𝑖 ∈ 𝐴𝑝−1) in Eq.(7), in order to avoid com-

plicated integrals, we simply discretize each feature variable into
five intervals according to Eq.(11) to estimate the value of mutual
information between features [36]:

𝑥
𝑓

𝑖
=



−2, if 𝑥 𝑓
𝑖
⩽ 𝜇𝑓 − 2 · 𝜎𝑓

−1, if 𝜇𝑓 − 2 · 𝜎𝑓 < 𝑥
𝑓

𝑖
⩽ 𝜇𝑓 − 𝜎𝑓

0, if 𝜇𝑓 − 𝜎𝑓 < 𝑥
𝑓

𝑖
⩽ 𝜇𝑓 + 𝜎𝑓

1, if 𝜇𝑓 + 𝜎𝑓 < 𝑥
𝑓

𝑖
⩽ 𝜇𝑓 + 2 · 𝜎𝑓

2, if 𝑥 𝑓
𝑖
> 𝜇𝑓 + 2 · 𝜎𝑓

(11)

where 𝜇𝑓 and 𝜎𝑓 respectively denote the mean value and standard
deviation of each feature 𝑓 ∈ 𝐹 derived from training set D.



Table 1: The pseudo-code of Saute.

Inputs:

D : the PL training set {(𝒙𝑖 , 𝑆𝑖 ) | 1 ⩽ 𝑖 ⩽𝑚} (X = R𝑑 ,
L = {𝑙1, 𝑙2, . . . , 𝑙𝑞 }, 𝒙𝑖 ∈ X, 𝑆𝑖 ⊆ L)

𝑑′ : the cardinality of selected feature subset
𝛼 : the learning rate in Eq.(13)
𝑘 : the number of exploited nearest neighbors
Outputs:

D′ : the induced lower-dimensional PL training set
{(𝒙′

𝑖
, 𝑆𝑖 ) | 1 ⩽ 𝑖 ⩽𝑚}

Process:

1: Initialize the𝑚 × 𝑞 labeling confidence matrix Y according to Eq.(1);
2: repeat
3: Initialize 𝐴0 = 𝜙 ;
4: for 𝑝=1 to 𝑑′ do
5: Calculate �̂� (𝑐 |𝑓 ) for ∀𝑓 ∈ 𝐹 \𝐴𝑝−1 according to Eq.(10);
6: Calculate

∑
𝑓𝑖 ∈𝐴𝑝−1 𝐼 (𝑓 ; 𝑓𝑖 ) for ∀𝑓 ∈ 𝐹 \𝐴𝑝−1 by discretization;

7: Find 𝑓 ∗𝑝 according to Eq.(7);
8: 𝐴𝑝 = 𝐴𝑝−1 ∪ {𝑓 ∗𝑝 };
9: end for

10: Construct the lower-dimensional PL training set D′ = {(𝒙′
𝑖
, 𝑆𝑖 ) |1 ⩽

𝑖 ⩽𝑚} where 𝒙′
𝑖
is derived from 𝒙𝑖 in accordance with the selected

feature subset;
11: Identify the 𝑘 nearest neighbors N(𝑥′

𝑖
) for ∀𝒙′

𝑖
(1 ⩽ 𝑖 ⩽𝑚) ;

12: Calculate the learning matrix L according to Eq.(12);
13: Calculate the intermediate matrix Y′ according to Eq.(13);
14: Calculate the updated labeling confidence matrix Ynew according to

Eq.(14);
15: Y = Ynew;
16: until convergence
17: Construct the lower-dimensional PL training set D′ according to se-

lected feature subset 𝐴𝑝 ;
18: Return D′

After determining the selected feature subset, we construct a
lower-dimensional PL training set D ′ = {(𝒙 ′

𝑖
, 𝑆𝑖 ) |1 ⩽ 𝑖 ⩽ 𝑚}

where 𝒙 ′
𝑖
is derived from 𝒙𝑖 in accordance with selected features.

Thereafter, the density estimation of latent label variable is refined
via updating the labeling confidence matrix by resorting to 𝑘NN
aggregation in the lower-dimensional feature space.

For each instance 𝒙 ′
𝑖
∈ R𝑑′

, the probability of each candidate
label being its ground-truth label is re-estimated via exploiting
labeling information of its 𝑘 nearest neighbors. The learning matrix
L = [L(𝑖, 𝑗))]𝑚×𝑞 is defined as:

L(𝑖, 𝑗) =
∑

𝒙′
𝑖𝑎
∈N(𝒙′

𝑖
)
Y(𝑖𝑎, 𝑗) × 𝜔𝑎 (12)

where N(𝒙 ′
𝑖
) denotes the 𝑘 nearest neighbors of 𝒙 ′

𝑖
and the voting

weight is set as 𝜔𝑎 = 𝑘 − 𝑎 + 1(1 ⩽ 𝑎 ⩽ 𝑘) for the 𝑎th nearest
neighbor [22, 59].

Afterwards, the labeling confidence matrix is updated by:

Y′ = (1 − 𝛼) · Y + 𝛼 · L (13)

where the learning rate is set as 𝛼 = 0.6(0 < 𝛼 < 1) in this paper.
In order to ensure that the confidences of labels outside the

candidate label set are zero and the constraints
∑𝑞

𝑗=1 Y(𝑖, 𝑗) = 1(1 ⩽
𝑖 ⩽ 𝑚) are satisfied, we make further adjustments to matrix Y′ and

obtain Ynew by:

Ynew (𝑖, 𝑗) =
{

Y′ (𝑖, 𝑗)∑
𝑏∈𝑆𝑖 Y

′ (𝑖,𝑏) if 𝑗 ∈ 𝑆𝑖

0 otherwise
(14)

Table 1 summarizes the complete procedure of Saute. Firstly,
the labeling confidence matrix is initialized (step 1) based on the as-
signment of the training data set. After that, an iterative procedure
alternating between mutual-information-based dependency maxi-
mization (step 3-9) and density estimation of latent label variable
(step 10-15) is conducted. The iterative procedure terminates if the
selected feature subset does not change or the maximum number
of iteration is reached. 1 Finally, the lower-dimensional PL training
set is constructed according to the selected feature subset.

4 EXPERIMENTS

4.1 Experimental Setup

In this section, Saute is coupled with state-of-the-art partial label
learning algorithms to evaluate the effectiveness of the proposed
partial label feature selection approach. Given the partial label
learning algorithm A, its coupling version with Saute is denoted
as A-Saute. The performance of A-Saute is compared against
that of A to verify the effectiveness of the proposed partial label
feature selection approach in improving the generalization ability
of the learning system.

In this paper, we utilize fivewell-established partial label learning
algorithms with suggested parameter configuration in respective
literatures to instantiate A:

• Pl-knn [22]: An averaging-based partial label learning ap-
proach which makes prediction on unseen instance by em-
ploying weighted 𝑘NN voting strategy [suggested configu-
ration: 𝑘=10].

• Pl-svm [33]: An identification-based partial label learning
approach which learns the predictive model by maximizing
the classification margin over candidate label set and non-
candidate label set [suggested configuration: regularization
parameter pool with {10−3, . . . , 103}].

• Pl-ecoc [60]: A transformation-based partial label learning
approach which learns the predictive model by decomposing
the PL learning problem into a group of binary learning
problems via adapting the error-correcting output codes
(ECOC) techniques [suggested configuration: ECOC coding
length ⌈10 · log2 (𝑞)⌉].

• Ipal [59]: An instance-based partial label learning approach
which learns the predictive model by adapting label propa-
gation for graph-based disambiguation [suggested configu-
ration: balancing parameter 𝛼 = 0.95].

• Sure [14]: A self-training partial label learning approach
which learns the desiredmodel and performs pseudo-labeling
jointly by solving a tailored convex-concave optimization
problem [suggested configuration: regularization parameters
𝜆 = 0.3, 𝛽 = 0.05].

As is shown in Table 1, the parameters 𝛼 and 𝑘 are set to be 0.6
and 8 respectively. The cardinality of the selected feature subset is

1In this paper, the maximum number of iterations is set to be 20 which suffices to yield
stable performance for the proposed approach



Table 2: Characteristics of the synthetic experimental data sets.

Data Set # Examples # Features # Class Labels # False Positive Labels (𝑟 ) Task Domain

mediamill 2,854 120 10 𝑟 = 1, 2, 3 video semantic detection [42]
Corel16k-s1 1,075 417 87 𝑟 = 1, 2, 3 matching words and pictures [3]
amazon 1,500 1,326 50 𝑟 = 1, 2, 3 authorship identification [12]

DeliciousMIL 1,409 1,389 20 𝑟 = 1, 2, 3 sentence labeling [43]
bookmark 2,500 1,413 57 𝑟 = 1, 2, 3 automatic tag suggestion [25]
sports 9,120 1,738 19 𝑟 = 1, 2, 3 human activity recognition [1]

Table 3: Classification accuracy (mean±std) of each comparing algorithm on controlled synthetic data sets (𝑟 ∈ {1, 2, 3}). Given
partial label learning algorithmA ∈ {Pl-knn,Pl-svm,Pl-ecoc, Ipal, Sure}, the performance ofA-Saute is compared against

that of A where the best performance on each data set is shown in boldface.

Comparing Data Set

Algorithms mediamill Corel16k-s1 amazon DeliciousMIL bookmark sports

𝑟 = 1 (one false positive label)
Pl-knn 0.637±0.024 0.016±0.017 0.025±0.025 0.033±0.039 0.170±0.026 0.288±0.015
Pl-knn-Saute 0.630±0.023 0.108±0.053 0.044±0.019 0.156±0.022 0.346±0.017 0.409±0.018
Pl-svm 0.485±0.049 0.100±0.016 0.105±0.105 0.036±0.015 0.280±0.023 0.673±0.023
Pl-svm-Saute 0.487±0.042 0.142±0.015 0.571±0.038 0.195±0.041 0.417±0.031 0.500±0.017
Pl-ecoc 0.604±0.042 0.192±0.088 0.069±0.069 0.065±0.040 0.330±0.041 0.680±0.030
Pl-ecoc-Saute 0.558±0.044 0.199±0.079 0.354±0.050 0.209±0.022 0.414±0.029 0.703±0.023
Ipal 0.642±0.027 0.154±0.054 0.105±0.043 0.062±0.020 0.309±0.040 0.887±0.010
Ipal-Saute 0.645±0.029 0.155±0.064 0.452±0.033 0.263±0.026 0.445±0.031 0.924±0.007
Sure 0.691±0.032 0.185±0.061 0.153±0.072 0.116±0.031 0.388±0.029 0.755±0.013
Sure-Saute 0.668±0.032 0.187±0.064 0.649±0.037 0.290±0.032 0.478±0.028 0.891±0.014

𝑟 = 2 (two false positive labels)
Pl-knn 0.622±0.023 0.021±0.014 0.021±0.009 0.027±0.014 0.162±0.012 0.290±0.015
Pl-knn-Saute 0.625±0.019 0.094±0.53 0.040±0.009 0.127±0.035 0.338±0.018 0.485±0.017
Pl-svm 0.488±0.038 0.070±0.034 0.081±0.019 0.031±0.020 0.261±0.021 0.638±0.011
Pl-svm-Saute 0.489±0.024 0.124±0.052 0.435±0.030 0.200±0.039 0.402±0.027 0.560±0.016
Pl-ecoc 0.500±0.037 0.156±0.073 0.043±0.011 0.040±0.026 0.288±0.038 0.603±0.033
Pl-ecoc-Saute 0.493±0.043 0.171±0.069 0.211±0.036 0.187±0.033 0.400±0.025 0.687±0.026
Ipal 0.585±0.029 0.141±0.050 0.088±0.047 0.053±0.034 0.304±0.017 0.874±0.008
Ipal-Saute 0.586±0.029 0.143±0.060 0.425±0.036 0.227±0.041 0.436±0.016 0.939±0.005
Sure 0.667±0.026 0.158±0.012 0.102±0.043 0.115±0.034 0.374±0.018 0.711±0.011
Sure-Saute 0.667±0.026 0.184±0.016 0.605±0.021 0.261±0.035 0.474±0.017 0.911±0.009

𝑟 = 3 (three false positive labels)
Pl-knn 0.598±0.017 0.018±0.015 0.020±0.008 0.043±0.022 0.140±0.026 0.292±0.021
Pl-knn-Saute 0.598±0.021 0.095±0.051 0.044±0.013 0.083±0.024 0.292±0.033 0.427±0.022
Pl-svm 0.479±0.046 0.065±0.059 0.063±0.015 0.029±0.017 0.252±0.030 0.601±0.022
Pl-svm-Saute 0.504±0.042 0.138±0.051 0.317±0.059 0.182±0.034 0.369±0.033 0.555±0.019
Pl-ecoc 0.095±0.014 0.126±0.086 0.031±0.012 0.063±0.035 0.200±0.044 0.503±0.039
Pl-ecoc-Saute 0.087±0.025 0.160±0.067 0.114±0.030 0.149±0.043 0.353±0.027 0.535±0.015
Ipal 0.511±0.026 0.139±0.061 0.084±0.043 0.044±0.041 0.293±0.041 0.863±0.013
Ipal-Saute 0.513±0.034 0.148±0.048 0.387±0.061 0.228±0.019 0.413±0.033 0.927±0.010
Sure 0.649±0.021 0.163±0.011 0.073±0.048 0.116±0.048 0.370±0.040 0.671±0.010
Sure-Saute 0.651±0.021 0.197±0.013 0.559±0.047 0.274±0.029 0.461±0.045 0.873±0.011

set to be 15% of the number of original features for each data set,
i.e., 𝑑 ′ = ⌈15% · 𝑑⌉.

In the rest of this section, comparative studies are conducted on
both synthetic and real-world partial label data sets with ten-fold
cross-validation where detailed experimental results of each data
set are presented subsequently.

4.2 Synthetic Data Sets

Following the conventional experimental protocol in partial label
learning [8–10, 17, 30, 56, 60], we generate synthetic partial label
data sets from multi-class data sets with controlling parameter 𝑟
which specifies the number of false positive labels in the candidate
label set (i.e., |𝑆𝑖 | = 𝑟 + 1). Given a multi-class example (𝒙𝑖 , 𝑦𝑖 ), 𝑟
false positive class labels Δ𝑟 ⊆ Y \ {𝑦𝑖 }(|Δ𝑟 | = 𝑟 ) are randomly
selected to form the candidate label set along with the ground-truth

label 𝑦𝑖 , i.e., 𝑆𝑖 = Δ𝑟 ∪ {𝑦𝑖 }, and the partial label example (𝒙𝑖 , 𝑆𝑖 )
is obtained consequently. Table 2 summarizes characteristics of
the synthetic data sets (𝑟 ∈ {1, 2, 3}) which are roughly ordered
according to the dimensionality of each data set. 2

Table 3 reports detailed experimental results of each compar-
ing algorithm over various synthetic data sets. Given partial label
learning algorithms A ∈ {Pl-knn, Pl-svm, Pl-ecoc, Ipal, Sure},
A-Saute is compared against A where the best classification per-
formance is shown in boldface. In addition, pairwise 𝑡-test at 0.05
significance level is conducted to show whether the performance
difference betweenA-Saute andA is significant, where the result-
ing win/tie/lose counts are reported in Table 4.

2Most data sets presented in Table 2 are derived from multi-label benchmark data sets
[64] by retaining examples with only one relevant label.
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Figure 1: Trend of classification accuracy ofA-Saute (A ∈{Pl-knn,Pl-svm,Pl-ecoc, Ipal Sure}) where the number of selected

features is set as 𝑑 ′ = ⌈𝛽 · 𝑑⌉. The coefficient 𝛽 increases from 0.05 to 0.6 with step-size 0.05 in (a) amazon (𝑟 = 1), (b) delicious
(𝑟 = 2) and (c) bookmark (𝑟 = 3).
Table 4: Win/tie/loss counts (pairwise t-test at 0.05 significance level) between A-Saute and A in terms of different number

of false positive labels (𝑟 = 1, 2, 3).
A-Saute against A

A=Pl-knn A= Pl-svm A=Pl-ecoc A=Ipal A=Sure
𝑟 = 1 5/1/0 4/1/1 3/2/1 4/2/0 4/2/0
𝑟 = 2 5/1/0 4/1/1 4/2/0 4/2/0 5/1/0
𝑟 = 3 5/1/0 4/1/1 4/2/0 4/2/0 5/1/0

In Total 15/3/0 12/3/3 11/6/1 12/6/0 14/4/0

Table 5: Characteristics of the real-world experimental data sets.

Data Set # Examples # Features # Class Labels average # Candidate Labels Task Domain

Lost 1,122 108 16 2.23 automatic face naming [10]
Yahoo! News 22,991 163 219 1.91 automatic face naming [18]

FG-NET 1,002 262 78 7.48 facial age estimation [35]
Soccer Player 17,472 279 171 2.09 automatic face naming [57]
Mirflickr 2,780 1,536 14 2.76 web image classification [21]
Malagasy 5,303 384 44 8.35 POS tagging [62]

Table 6: Win/tie/loss statistics (pairwise t-test at 0.05 significance level) between A-Saute and A, A-baselines on real-world

data sets.

Data Set
A-Saute against A and A-baselines (A = Pl-knn) A-Saute against A and A-baselines (A = Pl-ecoc)
A(Ori) A-RS A-MJE A-MR A(Ori) A-RS A-MJE A-MR

Lost win win win win win win win win
Yahoo! News win win win win win win win win

FG-NET win win win win win win win tie
Soccer Player tie win win win win win win win
Mirflickr tie win win win win win win win
Malagasy win win win win tie win win win
In Total 4/2/0 6/0/0 6/0/0 6/0/0 5/1/0 6/0/0 6/0/0 5/1/0

In order to explore the influence of parameter 𝑑 ′ on the per-
formance of the proposed algorithm Saute, we further conduct a
series of experiments with 𝑑 ′ = ⌈𝛽 · 𝑑⌉ where 𝛽 varies from 0.05 to
0.6 with step-size 0.05. Owing to the limited length of the paper,
only parts of experimental results are depicted in Fig. 1.

Based on the above experimental results over synthetic data sets,
we can draw following conclusions:

• The performance improvement of A-Saute against A is
moderate on mediamill which corresponds to the smallest
number of features (Table 3). On the three data sets with
more than 1300 features and relatively small number of exam-
ples (i.e., amazon, DeliciousMIL and bookmark), A-Saute
achieves better performance than A in all 45 cases (Table
4), and the classification accuracy has been improved with
Saute by more than 0.1 in 80% cases. These results demon-
strate that the benefits brought by Saute are even more

pronounced under challenging circumstances of high dimen-
sionality and insufficient training examples.

• As is shown in Fig. 1, the classification accuracy of each par-
tial label learning algorithm coupled with Saute fluctuates
moderately as the value of 𝑑 ′ changes. The evaluation results
do not monotonously increase or decrease with the number
of selected features in all curves. There is no one single value
of 𝑑 ′ which can consistently lead to the best performance,
although 𝑑 ′ = ⌈0.15 ·𝑑⌉ is a reasonable default setting in this
paper. Further performance improvement could be achieved
through fine-tuning the value of 𝑑 ′ for different data sets
and learning algorithms.

4.3 Real-World Data Sets

Table 5 summarizes characteristics of the real-world partial label
data sets collected from different task domains, including Lost
[10], Soccer Player [57] and Yahoo! News [18] for automatic face
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Figure 2: Classification accuracy of each base classifierA ∈ {Pl-knn,Pl-ecoc} before (denoted by Ori in the legend) and after

employing PL feature selection methods (including Saute, RS, MJE, MR). The number of selected features is set as 𝑑 ′ = ⌈𝛽 · 𝑑⌉
where the coefficient 𝛽 increases from 0.05 to 0.6 with step-size 0.05 in (a, b) Lost , (c, d) Yahoo! News, (e, f) FG-NET, (g, h) Soccer
Player, (i, j) Mirflickr and (k, l) Malagasy.

naming from images or videos, FG-NET [35] for facial age estimation,
Mirflickr [21] for web image classification and Malagasy [62]
for part-of-speech (POS) tagging. 3 In the data set of automatic
face naming, instances denote faces cropped from images or video
frames while candidate labels are derived from names extracted
from the associated captions or subtitles. In the data set of facial
age estimation, instances denote human faces with landmarks while
candidate labels are derived from ages denoted by crowdsourced
labelers. In the data set of web image classification, instances denote
web images while candidate labels are derived from annotations
extracted from the web environment. In the data set of POS tagging,
instances denote the target words with contextual features while
candidate labels are derived from the POS tags that the target words
may have.

In this subsection, two base classifiers (A ∈ {Pl-knn, Pl-ecoc})
are coupled with Saute and other three naive partial label feature
selection approaches which are constructed as comparing algo-
rithms:

• Random Selection (RS): Construct the feature subset 𝐴RS
by randomly selecting 𝑑 ′ features from the original feature
set.

3Data available at: http://palm.seu.edu.cn/zhangml/

• Maximum Joint Entropy (MJE): Entropy is commonly
used to measure the quantity of information [39]. In order to
achieve the most informative feature subset, MJE constructs
the feature subset𝐴MJE by solving the optimization problem
𝐴MJE = argmax𝐴⊆𝐹, |𝐴 |=𝑑′ 𝐻 (𝐴).

• Maximum Relevance (MR): Construct the feature subset
𝐴MR by solving the optimization problem Eq.(2) with inde-
pendence assumption, i.e., greedily select the near-optimal
feature in each step according to Eq.(5).

Fig. 2 illustrates the predictive accuracy of each base classifier
before (denoted by Ori in the legend of the figure) and after em-
ploying the proposed feature selection technique Saute and three
baseline methods on each real-world data set. Furthermore, pair-
wise 𝑡-test at 0.05 significance level is conducted to show whether
the performance differences betweenA-Saute andA,A-baselines
are significant. The resulting win/tie/loss statistics are reported in
Table 6.

From the above experimental results on real-world data sets, we
can observe that:

• As is shown in Fig. 2, the performance improvement of each
base classifier can be achieved after being coupled with
Saute through fine-tuning the value of 𝑑 ′ for each data
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Figure 3: Trend of classification accuracy of A-Saute (A ∈{Pl-knn, Pl-svm, Pl-ecoc, Ipal Sure}). The number of exploited

nearest neighbors (i.e. 𝑘) increases from 3 to 10 with step-size 1 in (a) synthetic data set mediamill (𝑟 = 1) and (b) real-world

data set Lost; the number of learning rate (i.e. 𝛼) increases from 0.2 to 0.8with step-size 0.1 in (c) synthetic data set Corel16k-s1
(𝑟 = 2) and (d) real-world data set Mirflickr.

set. It is worth mentioning that the classification accuracy
of each base classifier has at least been doubled on FG-NET,
which corresponds to the real-world data set with smallest
number of examples but large average number of candidate
labels. These impressive results indicate that the benefits
brought by Saute would be more significant under challeng-
ing circumstances of insufficient training examples and high
rate of false positive labels.

• Out of the 36 statistical comparisons (6 data sets × 3 base-
lines × 2 base classifiers), the performance of A-Saute is
significantly superior to that of A-baselines in 35 cases (Ta-
ble 6). These results indicate that mutual information is an
appropriate evaluation indicator of dependency in partial
label learning framework and the proposed partial label fea-
ture selection approach Saute could significantly improve
the performance of base classifiers via effectively removing
irrelevant and redundant features.

4.4 Sensitivity Analysis

As is shown in Table 1,𝑑 ′ serves as an essential parameter for Saute
which determines the cardinality of the selected feature subset. The
influence of parameter 𝑑 ′ on the performance of Saute has been
shown in Fig. 1 and Fig. 2. Overall, the proposed feature selection
approach behaves smoothly as the value of 𝑑 ′ changes within a
certain range. The classification accuracy of partial label learning
algorithms coupled with Saute could achieve further improvement
by fine-tuning the value of𝑑 ′, although𝑑 ′ = ⌈0.15·𝑑⌉ is a reasonable
default setting in this paper.

Apart from 𝑑 ′, the learning rate 𝛼 and the number of exploited
nearest neighbors 𝑘 also serve as critical parameters for Saute.
Fig. 3 illustrates how the predictive performance of each partial
label learning algorithm coupled with Saute changes as 𝛼 increases
from 0.2 to 0.8 with an interval of 0.1 and 𝑘 increases from 3 to
10 with an interval of 1 respectively. As is shown in Fig. 3, the
performance of each partial label learning algorithm coupled with
Saute is relatively stable as the value of 𝛼 or 𝑘 changes. Therefore,
the value of 𝛼 and 𝑘 is fixed to be 0.6 and 8 respectively in this
paper.

5 CONCLUSION

In this paper, we make the first attempt towards partial label feature
selection problem. Accordingly, a novel approach named Saute is

proposed which performs partial label feature selection by maximiz-
ing the mutual-information-based dependency between selected
features and labeling information in an iterative manner. In each
iteration, the near-optimal features are selected greedily according
to properties of submodular function, while the density of latent
label variable is estimated from updated labeling confidences over
candidate labels by resorting to 𝑘NN aggregation in the induced
lower-dimensional feature space. Comprehensive experiments over
synthetic as well as real-world partial label data sets show that
Saute is an effective partial label feature selection approach to
improve the performance of state-of-the-art partial label learning
algorithms. It is worth mentioning that the labeling confidence
matrix Y derived from Saute may bring further improvement of
predictive performance for specific partial label learning algorithms
with proper utilization.
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