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As an emerging weakly supervised learning framework, partial label learning considers inaccurate supervision where each training

example is associated with multiple candidate labels among which only one is valid. In this paper, a �rst attempt towards employing

dimensionality reduction to help improve the generalization performance of partial label learning system is investigated. Speci�cally,

the popular linear discriminant analysis (LDA) techniques are endowedwith the ability of dealing with partial label training examples.

To tackle the challenge of unknown ground-truth labeling information, a novel learning approach named Delin is proposed which

alternates between LDA dimensionality reduction and candidate label disambiguation based on estimated labeling con�dences over

candidate labels. On one hand, the (kernelized) projection matrix of LDA is optimized by utilizing disambiguation-guided labeling

con�dences. On the other hand, the labeling con�dences are disambiguated by resorting to kNN aggregation in the LDA-induced fea-

ture space. Extensive experiments over a broad range of partial label data sets clearly validate the e�ectiveness of Delin in improving

the generalization performance of well-established partial label learning algorithms.
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1 INTRODUCTION

In partial label (PL) learning [11, 28, 53], each training example is represented by a single instance while associated with

a set of candidate labels among which only one corresponds to the ground-truth label. The task of partial label learning

is to learn a multi-class classi�cation model from PL training examples which is capable of assigning proper class label

for the unseen instance. As an emerging weakly supervised learning framework with inaccurate supervision [57], the

need of learning from examples with candidate label sets naturally arises under many real-world scenarios, such as

web mining [21], multimedia content analysis [8, 10, 26, 51], ecoinformatics [3, 26, 42], natural language processing

[33, 34, 56], etc.

Due to the limited supervision information available from training set, the generalization performance of partial

label learning system is usually less satisfactory. As an e�ective way to help improve the generalization ability of learn-

ing system, it is rather desirable to explore bene�cial dimensionality reduction mechanism for partial label learning.
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Existing works mainly focus on inducing partial label classi�cation model by disambiguating the candidate label sets

of PL training examples [6, 8, 9, 11, 17, 26, 27, 42, 50], while the usefulness of dimensionality reduction for partial label

learning hasn’t been well investigated. Accordingly, in order to design partial label dimensionality reduction tech-

niques, the major challenge lies in that the ground-truth label of each PL training example is not directly accessible to

the learning algorithm.

To tackle the challenge of unknown ground-truth labeling information, a �rst attempt towards partial label dimen-

sionality reduction is investigated in this paper where a novel learning approach named Delin, i.e. Disambiguation

Enabled LINear discriminant analysis, is proposed. Speci�cally, Delin endows the popular linear discriminant analysis

(LDA) techniques with the ability of dealing with PL training examples. Based on labeling con�dences estimated over

candidate labels, an alternating procedure is employed by Delin to enable LDA dimensionality reduction and candi-

date label disambiguation. On one hand, LDA dimensionality reduction is performed by optimizing the (kernelized)

projection matrix via the utilization of disambiguation-guided labeling con�dences. On the other hand, candidate label

disambiguation is performed by resorting to kNN aggregation in the feature space induced by LDA projection matrix.

Comprehensive experiments over synthetic and real-world partial label data sets show that Delin serves as an e�ec-

tive dimensionality reduction approach to improving the generalization performance of well-established partial label

learning algorithms.

The rest of this paper is organized as follows. Section 2 brie�y discusses related works on partial label learning.

Section 3 introduces technical procedure of the proposed Delin approach. Section 4 reports detailed results of exper-

imental studies. Finally, Section 5 concludes this paper.

2 RELATEDWORKS

Partial label learning is one of the emerging weakly supervised learning frameworks [57], where the learning system

needs to learn from inaccurate supervision information with the ground-truth label concealed in the candidate label

set of each training example. Conceptually speaking, partial label learning is related to several well-established weakly

supervised learning frameworks such as semi-supervised learning, multi-instance learning and multi-label learning.

Semi-supervised learning works under incomplete supervision where only few labeled examples are available for

training along with abundant unlabeled examples [7, 44, 59]. Although the ground-truth label for either unlabeled

example or PL example is unknown to the learning algorithm, the scope of ground-truth label for unlabeled example

and PL example assumes the whole label space and the candidate label set respectively. Multi-instance learning works

under inexact supervision where the class label is assigned at the level of bags (i.e. a set of instances) instead of indi-

vidual instances [2, 5, 25]. Although the actual correspondence between instances and labels for either multi-instance

example or PL example is ambiguous, the ambiguity for multi-instance example and PL example arises in the instance

space and the label space respectively. Multi-label learning works under non-unique supervision where multiple valid

class labels are assigned to a single instance [47, 54, 58]. Although the labeling information for either multi-label ex-

ample or PL example is non-unique, the set of class labels assigned to multi-instance example and PL example are valid

and candidate ones respectively.

To learn from PL training examples, one natural solution is trying to recover the ground-truth labeling informa-

tion via candidate label set disambiguation, including disambiguation by identi�cation or disambiguation by averaging.

For the strategy of identi�cation-based disambiguation, the unknown ground-truth label is treated as latent variable

whose value is estimated by employing iterative optimization procedure such as EM. The optimization objective can
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be instantiated in di�erent ways such as maximizing the likelihood of observing the PL training examples over their

candidate label sets [22, 26, 27], or maximizing the predictive margin between candidate labels and non-candidate

labels of PL training examples [6, 15, 31, 43, 50].

For the strategy of averaging-based disambiguation, all candidate labels of the PL training example are treated in an

equal manner whose modeling outputs are averaged to help yield the �nal prediction. The averaging procedure can

be instantiated in di�erent ways such as distinguishing the averaged modeling outputs from candidate labels between

the modeling outputs from non-candidate labels for discriminative models [11, 41], or aggregating the votes among

candidate labels of the unseen instance’s neighboring examples for distance-based models [17, 20, 39, 52].

The e�ectiveness of disambiguation strategy could be impacted by the false positive labels residing in the candidate

label set, especially when the size of candidate label set is large. Speci�cally, for identi�cation-based disambiguation

the estimated ground-truth label might turn out to be false positive one, while for averaging-based disambiguation the

modeling output from false positive labels might overwhelm the intrinsic modeling output from ground-truth label.

Other than candidate label set disambiguation, another possible solution is trying to transform the problem of learning

from PL examples into other learning problems in principled ways. Correspondingly, existing instantiations towards

the transformation strategy can be witnesses such as binary decomposition [46, 53], dictionary learning [9], graph

matching [29], regression [14, 42, 48, 55], online learning [49], etc.

It is worth noting that existingworks on partial label learningmainly focus onmanipulating the label space to induce

the PL predictive model, while few attempts have been made in manipulating the instance space to help improve the

generalization ability of partial label learning system. Next, we present the Delin approach which makes use of the

popular linear discriminant analysis techniques to learn from PL training examples.

3 THE PROPOSED APPROACH

Let X = Rd be the d-dimensional instance space and Y = {l1, l2, . . . , lq } be the label space consisting of q class labels.

Given the PL training set D = {(xi , Si ) | 1 ≤ i ≤ m} where xi = (xi1,xi2, . . . ,xid )
> ∈ X is a d-dimensional feature

vector and Si ⊆ Y is the candidate label set associated with xi , the task of partial label learning is to derive a multi-class

classi�cation model f : X 7→ Y from D. For each PL training example (xi , Si ), it is assumed that the ground-truth

label yi for xi resides in its candidate label set Si (i.e. yi ∈ Si ) while is not directly accessible to the training algorithm.

Let X = [x1,x2, . . . ,xm ] ∈ Rd×m be the instance matrix formed by concatenating all feature vectors in the train-

ing set, the goal of partial label dimensionality reduction is to learn a projection matrix W = [w1,w2, . . . ,wd ′ ] ∈

Rd×d ′
(d ′ � d) which maps X into the d ′-dimensional feature space, i.e. X′ = W>X. In this paper, we propose the

Delin approach by adapting the popular linear discriminant analysis mechanism, where the projection matrix W is

learned iteratively via an alternating procedure between LDA dimensionality reduction and candidate label disambigua-

tion.

To ful�ll the alternating procedure, wemake use of the labeling con�dencematrix Y = [Yi j ]m×q where each element

Yi j represents the estimated con�dence of lj being the ground-truth label for xi . Speci�cally, the labeling con�dence

matrix is initialized as follows:

∀ 1 ≤ i ≤ m, 1 ≤ j ≤ q : Yi j =






1
|Si |
, if lj ∈ Si

0, otherwise
(1)
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Here, the constraints
∑q

j=1 Yi j = 1 (1 ≤ i ≤ m) hold in accordance with the PL assumption that the ground-truth label

of xi resides in its candidate label set Si .

In the following subsections, technical details of the two alternating steps are scrutinized.

3.1 LDA Dimensionality Reduction

For traditional multi-class LDA [16, 30], the projection matrix W is learned by solving the following optimization

problem:

arg max
W

tr
(
W>Sb W

)
(2)

s.t. : w>
h Swwh = 1 (1 ≤ h ≤ d ′)

Here, Sb ∈ Rd×d and Sw ∈ Rd×d correspond to the between-class scatter matrix and within-class scatter matrix

respectively.

To endow LDA with the ability of dealing with PL training examples, the key adaptation lies in the derivation of

scatter matrices Sb and Sw . Let Y be the current labeling con�dence matrix, Delin speci�es the global mean vector

μ ∈ Rd and the class-wise mean vector μ j ∈ Rd (1 ≤ j ≤ q) as follows:

μ =

∑m
i=1 xi

m
(3)

μ j =

∑m
i=1 Yi j ∙ xi
∑m

i=1 Yi j

Accordingly, the total scatter matrix St ∈ Rd×d and within-class scatter matrix Sw can be derived as:

St =

m∑

i=1

(xi − μ)(xi − μ)> (4)

= X̄>X̄

Sw =

q∑

j=1

m∑

i=1

Yi j ∙ (xi − μ j )(xi − μ j )
>

Here, X̄ = X − μe> represents the centralized instance matrix with e = [1, 1, . . . , 1]> being an m-dimensional unit

vector. Thereafter, the between-class scatter matrix Sb can be derived as:

Sb = St − Sw (5)

=

q∑

j=1

(
m∑

i=1

Yi j

)

∙ (μ j − μ)(μ j − μ)>

= X̄>YC−1Y>X̄

Here, C = diag[c1, c2, . . . , cq ] represents the q × q diagonal matrix with diagonal element c j =
∑m

i=1 Yi j (1 ≤ j ≤ q).

For each projection vector wh (1 ≤ h ≤ d ′) in W, the Lagrange function w.r.t. Eq.(2) can be derived by introducing

Lagrange multipliers λh :

L(wh , λh ) = w>
h Sbwh − λh (w

>
h Swwh − 1) (6)
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By setting ∂L(wh,λh )
∂wh

= 0, the necessary condition on the optimal solution of wh corresponds to:
(
S−1

w Sb

)
wh = λhwh (7)

Therefore, λh and wh turn out to be an eigenvalue and the corresponding eigenvector of S−1
w Sb . Accordingly, Delin

forms the LDA projection matrix W by concatenating the eigenvectors w.r.t. the top d ′ eigenvalues of S−1
w Sb .

Kernel Extension Other than the above plain procedure, kernel trick can also be introduced to perform LDA dimen-

sionality reduction. Let φ : Rd 7→ RHκ be the (implicit) mapping from the original feature space to the Reproducing

Kernel Hilbert Space (RKHS) induced by kernel function κ : X × X 7→ R. Accordingly, we can have the global mean

vector μκ ∈ RHκ and the class-wise mean vector μκj ∈ RHκ (1 ≤ j ≤ q) in RKHS:

μκ =

∑m
i=1 φ(xi )

m
(8)

μκj =

∑m
i=1 Yi j ∙ φ(xi )
∑m

i=1 Yi j
(9)

Therefore, the kernelized between-class scatter matrix Sκb and within-class scatter matrix Sκw can be derived as

follows:

Sκb =

q∑

j=1

(
μκj − μκ

) (
μκj − μκ

)>
(10)

Sκw =

q∑

j=1

m∑

i=1

Yi j ∙
(
φ(xi ) − μκj

) (
φ(xi ) − μκj

)>
(11)

Without loss of generality, let wκ
h (1 ≤ h ≤ d ′) be the projection vector in RKHS:

wκ
h = φ(X)αh (12)

where φ(X) = [φ(x1),φ(x2), . . . ,φ(xm )] corresponds to the instance matrix in RKHS and αh = [αh
1 ,α

h
2 , . . . ,α

h
m ]>

corresponds to the coe�cient vector to be learned for kernelized LDA.

Then, the between-class variance w.r.t. projection vector wκ
h in RKHS can be calculated as:

дb (αh ) = wκ
h
> Sκb wκ

h (13)

= α>
h φ(X)>

©
­

«

q∑

j=1

(
μκj − μκ

) (
μκj − μκ

)>ª
®

¬

φ(X)αh

= α>
h Φαh

Here, Φ =
∑q

j=1(ϕ j − ϕ∗)(ϕ j − ϕ∗)> ∈ Rm×m with ϕ∗ = [ϕ∗1,ϕ
∗
2, . . . ,ϕ

∗
m ]> and ϕ j = [ϕ j1,ϕ j2, . . . ,ϕ jm ]> (1 ≤ j ≤ q)

taking the following component values:

ϕ∗i =

∑m
k=1 κ(xi ,xk )

m
(1 ≤ i ≤ m) (14)

ϕ ji =

∑m
k=1 Yk j ∙ κ(xi ,xk )

∑m
k=1 Yk j

(1 ≤ i ≤ m)

Accordingly, the within-class variance w.r.t. projection vector wκ
h in RKHS can be calculated as:
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дw (αh ) = wκ
h
> Sκw wκ

h (15)

= wκ
h
> ©

­

«

q∑

j=1

m∑

i=1

Yi j ∙
(
φ(xi ) − μκj

) (
φ(xi ) − μκj

)>ª
®

¬

wκ
h

= α>
h ΩαhHere, Ω =

∑q
j=1

∑m
i=1 Yi j ∙ KHj K> ∈ Rm×m with K = φ(X)>φ(X) = [Ki j ]m×m being the Gram matrix, i.e. Ki j =

κ(xi ,x j ). Furthermore, Hj ∈ Rm×m turns out to be the following matrix:

Hj = I −
11>

∑m
i=1 Yi j

(1 ≤ j ≤ q) (16)

Here, I and 1 represent them ×m identity matrix andm-dimensional all-one vector respectively.

Similar to Eq.(2), the coe�cient matrix A = [α1,α2, . . . ,αd ′ ] ∈ Rm×d ′
for kernelized LDA can be learned by solving

the following problem:

arg max
A

tr
(
A>ΦA

)
(17)

s.t. : α>
h Ωαh = 1 (1 ≤ h ≤ d ′)

In the kernelized version, Delin forms the coe�cient matrix A by concatenating the eigenvectors w.r.t. the top d ′

eigenvalues of Ω−1Φ. Accordingly, the instance matrix X can be mapped into the d ′-dimensional feature space, i.e.

X′ = A>K.

3.2 Candidate Label Disambiguation

Given the mapped instance matrix X′ = [x ′
1,x

′
2, . . . ,x

′
m ] ∈ Rd ′×m , we can have the transformed PL training set in

LDA-induced feature space, i.e. D′ = {(x ′
i , Si ) | 1 ≤ i ≤ m}. Then, the labeling con�dence matrix Y will be updated to

Y′ = [Y ′
i j ]m×q by exploiting the transformed PL training examples.

Speci�cally, Delin performs kNN aggregation in the LDA-induced feature space. For each instance x ′
i ∈ Rd ′

, we

use N(x ′
i ) to denote its k nearest neighbors identi�ed in D′. Afterwards, a counting matrix V = [Vi j ]m×q as well as

a weighted voting matrix Z = [Zi j ]m×q are speci�ed by aggregating the labeling information of each neighboring

example in N(x ′
i ):

∀ 1 ≤ i ≤ m, 1 ≤ j ≤ q : (18)

Vi j =
∑

(x ′
a,Sa )∈N(x ′

i )

[[lj ∈ Sa ]]

∀ 1 ≤ i ≤ m, 1 ≤ j ≤ q :

Zi j =
∑

(x ′
a,Sa )∈N(x ′

i )

Yaj ∙ [[lj ∈ Sa ]] ∙ ωa

Here, [[π ]] returns 1 if predicate π holds and 0 otherwise. Conceptually, Vi j stores the number of neighboring examples

of x ′
i which take lj as their candidate label. Obviously, Vi j ≤ k holds for each element in V. Furthermore, for the a-th

neighboring example (1 ≤ a ≤ k), the voting weight is set asωa = k−a+1 [20, 52]. Therefore, based on current labeling

con�dence matrix Y and the voting weights, Zi j consolidates the labeling con�dence of lj being the ground-truth label

for each neighboring example.
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Table 1. The pseudo-code of Delin.

Inputs:

D: the PL training set {(xi , Si ) | 1 ≤ i ≤ m} (X = Rd ,Y = {l1, l2, . . . , lq },xi ∈ X, Si ⊆ Y)
d ′: the dimensionality of LDA-induced feature space
mode: the LDA mode (plain or kernelized) for dimensionality reduction
k : the number of nearest neighbors used for candidate label disambiguation
Outputs:
D′: the transformed PL training set {(xi , Si ) | 1 ≤ i ≤ m} in the LDA-induced feature space

Process:

1: Initialize them × q labeling con�dence matrix Y according to Eq.(1);

2: repeat

3: if mode = plain then
4: Specify the global mean vector μ and the class-wise mean vector μ j (1 ≤ j ≤ q) according to Eq.(3);

5: Derive the total scatter matrix St and within-class scatter matrix Sw according to Eq.(4);

6: Derive the between-class scatter matrix Sb according to Eq.(5);

7: Form the LDA projection matrix W = [w1,w2, . . . ,wd ′ ] with wh (1 ≤ h ≤ d ′) set to be the eigenvector w.r.t.
the top-h eigenvalue of S−1

w Sb satisfying w>
h Swwh = 1;

8: Set the transformed PL training set D′ = {(x ′
i , Si ) | x ′

i = W>xi , 1 ≤ i ≤ m};

9: else
10: Set ϕ∗ = [ϕ∗1,ϕ

∗
2, . . . ,ϕ

∗
m ]> and ϕ j = [ϕ j1,ϕ j2, . . . ,ϕ jm ]> (1 ≤ j ≤ q) according to Eq.(14) with the speci�ed

kernel function κ(∙, ∙);

11: Derive Φ =
∑q

j=1(ϕ j − ϕ∗)(ϕ j − ϕ∗)>;

12: Set K = [Ki j ]m×m with Ki j = κ(xi ,x j ) and Hj (1 ≤ j ≤ q) according to Eq.(16);

13: Derive Ω =
∑q

j=1
∑m

i=1 Yi j ∙ KHj K>;

14: Form the coe�cient matrix A = [α1,α2, . . . ,αd ′ ] with αh (1 ≤ h ≤ d ′) set to be the eigenvector w.r.t. the
top-h eigenvalue of Ω−1Φ satisfying α>

h Ωαh = 1;

15: Set the transformed PL training set D′ = {(x ′
i , Si ) | x ′

i = A>K(:, i), 1 ≤ i ≤ m} (K(:, i) being the i-th column
of K);

16: end if

17: for i=1 tom do

18: Identify the k nearest neighbors of x ′
i in D′ as N(x ′

i );

19: end for

20: Calculate the counting matrix V and weighted voting matrix Z according to Eq.(18);

21: Specify the updated labeling con�dence matrix Y′ according to Eqs.(19)-(20);

22: Set Y = Y′;

23: until convergence

Given the PL example (x ′
i , Si ) in LDA-induced feature space, we denote li∗ as the candidate label in Si which has

largest weighted voting:1

li∗ = arg maxlj ∈Si Zi j (19)

1In case that there are more than one candidate label which have the same largest weighted voting, one of them will be randomly selected to instantiate
li∗ .
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Then, we set the updated labeling con�dence matrix Y′ as follows:

∀ 1 ≤ i ≤ m, 1 ≤ j ≤ q : (20)

Y ′
i j =






[[j = i∗]], if |Si | = 1
Vii∗

k , if |Si | > 1 and j = i∗
(
1 − Vii∗

k

)
/(|Si | − 1), if |Si | > 1 and j , i∗

In other words, the labeling con�dence for the candidate label with largest weighted voting (i.e. li∗ ) will be updated

by referring to the counting statistic Vii∗ . Then, the remaining labeling con�dences are shared among the candidate

labels in Si other than li∗ .

Table 1 summarizes the complete procedure of Delin. Firstly, the labeling con�dence matrix is initialized based

on the candidate label assignment (Step 1). Then, an iterative procedure alternating between LDA dimensionality

reduction (Steps 4-8 for plain mode, or Steps 10-15 for kernelized mode) and candidate label disambiguation (Steps

17-22) is conducted. Here, the iterative procedure terminates if the labeling con�dence matrix does not change or the

maximum number of iterations is reached.2 Consequently, the transformed PL training set D′ in the LDA-induced

feature space can be utilized for follow-up model training.

4 EXPERIMENTS

4.1 Experimental Setup

To the best of our knowledge, Delin serves as the �rst approach towards dimensionality reduction for partial label

data. To show the e�ectiveness of Delin (as well as its kernelized version Delinκ ), we investigate the performance of

well-established partial label learning algorithms after coupling with the proposed dimensionality reduction approach.

For any partial label learning algorithm A, we use A-Delin (A-Delinκ ) to denote its coupling version with Delin

(Delinκ ) which learns from partial label training examples in the LDA-induced feature space. Accordingly, to verify

whether the proposed dimensionality reduction approach is e�ective in improving the generalization ability of partial

label learning system, the performance of A-Delin (A-Delinκ ) trained on the transformed PL training set D′ is

compared against that of A trained on the original PL training set D.

To perform thorough comparative studies, a total of four well-established partial label learning algorithms are em-

ployed to instantiate A, each con�gured with parameters suggested in respective literatures:

• Pl-knn [20]: An instance-based partial label learning algorithm which learns from PL examples by making

prediction on unseen instance via weighted kNN voting [suggested con�guration: k=10].

• Pl-svm [31]: A maximum-margin partial label learning algorithm which learns from PL examples by maxi-

mizing the classi�cation margin over candidate label set and non-candidate label set [suggested con�guration:

regularization parameter pool with {10−3, . . . , 103}].

• Pl-ecoc [53]: A transformation-based partial label learning algorithm which learns from PL examples by de-

composing the PL learning problem into a number of binary learning problems via adapting the error-correcting

output codes (ECOC) techniques [suggested con�guration: ECOC coding length d10 ∙ log2(q)e].

2In this paper, the maximum number of iterations is set to be 75 which su�ces to yield stable performance for the proposed approach.
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Table 2. Characteristics of the synthetic experimental data sets.

Data Set # Examples # Features # Class Labels # False Positive Labels (r ) Task Domain
mediamill 2,854 120 10 r = 1, 2, 3 video semantic detection [36]
tmc2007 8,670 981 18 r = 1, 2, 3 text anomaly detection [38]
slashdot 3,142 1,079 19 r = 1, 2, 3 text classi�cation [24]
amazon 1,500 1,326 50 r = 1, 2, 3 authorship identi�cation [13]

DeliciousMIL 1,409 1,389 20 r = 1, 2, 3 sentence labeling [37]
bookmark 2,500 1,413 57 r = 1, 2, 3 automatic tag suggestion [23]
sports 9,120 1,738 19 r = 1, 2, 3 human activity recognition [1]
sector 6,412 6,104 105 r = 1, 2, 3 text classi�cation [35]

• Ipal [52]: Another instance-based partial label learning algorithm which learns from PL examples by making

prediction on unseen instance via adapting label propagation for graph-based disambiguation [suggested con-

�guration: balancing parameter α = 0.95].

For Delin, the two parameters d ′ (i.e. # features after LDA dimensionality reduction) and k (i.e. # nearest neighbors

for candidate label disambiguation) as shown in Table 1 are set to be dthr ∙ min(q,d)e with thr = 0.6 and k = 8

respectively. Furthermore, linear kernel is utilized to ful�ll the kernelized version Delinκ .

In this paper, comparative studies are conducted on synthetic aswell as real-world data sets. Ten-fold cross-validation

is performed on each data set, and the detailed experimental results (mean classi�cation accuracy with standard devi-

ation) are reported in the following subsections.

4.2 Synthetic Data Sets

To generate synthetic PL data set, we follow the widely-used strategy [8, 9, 11, 17, 26, 50, 53] to derive PL examples

from multi-class examples with controlling parameter r . Speci�cally, r controls the number of false positive labels in

the candidate label set of PL example. Given a multi-class example (xi ,yi ), one PL example (xi , Si ) can be generated

by randomly adding r false positive labels Δr ⊆ Y \ {yi } into Si along with the ground-truth label yi , i.e. Si =

Δr
⋃
{yi } (|Si | = r + 1).

Characteristics of the synthetic data sets (r ∈ {1, 2, 3}) are summarized in Table 2, where each data set is roughly

ordered based on its number of features.3 Accordingly, detailed experimental results of each comparing algorithm

are reported in Table 3. For partial label learning algorithm A ∈ {Pl-knn, Pl-svm, Pl-ecoc, Ipal}, both A-Delin

and A-Delinκ are compared against A where the best classi�cation accuracy is shown in boldface. Furthermore, to

show whether the performance di�erence between A-Delin (A-Delinκ ) and A is signi�cant, pairwise t-test at 0.05

signi�cance level is conducted where the resulting win/tie/loss counts are reported in Table 4.

Based on the reported results on synthetic data sets, we can observe that:

• Among all the 96 cases (8 data sets × 3 settings of r × 4 PL learning algorithms; Table 3), coupling with the

proposed dimensionality reduction approach (i.e. Delin and Delinκ ) would lead to better performance than

the original partial label learning algorithm A in 98.9% cases. The only exception is on mediamill (r = 1;

A = Ipal) which corresponds to the synthetic data set with least number of features under least number of

false positive labels. Furthermore, A-Delinκ achieves better performance than A-Delin in 74 out of 96 cases.

3In Table 2, most multi-class data sets are derived from multi-label benchmark data sets [58] by retaining examples with only one relevant label.
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Table 3. Classification accuracy (mean±std. deviation) of each comparing algorithm on controlled synthetic data sets (r ∈ {1, 2, 3}).
For partial label learning algorithm A ∈ {Pl-knn, Pl-svm, Pl-ecoc, Ipal}, the performance of A-Delin and A-Delinκ are compared
against that of A where the best performance on each data set is shown in boldface.

Comparing Data Set
Algorithms mediamill tmc2007 slashdot amazon DeliciousMIL bookmark sports sector

r = 1 (one false positive label)
Pl-knn 0.637 ± 0.034 0.402 ± 0.012 0.163 ± 0.022 0.025 ± 0.033 0.033 ± 0.039 0.170 ± 0.026 0.288 ± 0.015 0.014 ± 0.005
Pl-knn-Delin 0.688 ± 0.027 0.654± 0.013 0.698 ± 0.033 0.609 ± 0.048 0.464 ± 0.043 0.536 ± 0.036 0.865± 0.014 0.530 ± 0.034
Pl-knn-Delinκ 0.649 ± 0.019 0.665± 0.014 0.705 ± 0.017 0.594 ± 0.039 0.523 ± 0.021 0.658 ± 0.025 0.929 ± 0.006 0.562 ± 0.030
Pl-svm 0.495 ± 0.042 0.645± 0.021 0.595 ± 0.018 0.120 ± 0.026 0.036 ± 0.017 0.279 ± 0.029 0.677± 0.019 0.070 ± 0.012
Pl-svm-Delin 0.600 ± 0.037 0.666 ± 0.013 0.717±0.029 0.558 ± 0.038 0.354 ± 0.043 0.534 ± 0.037 0.709±0.013 0.496 ±0.035
Pl-svm-Delinκ 0.527± 0.032 0.675 ± 0.014 0.727±0.024 0.631 ± 0.054 0.471 ± 0.037 0.668 ± 0.030 0.726± 0.015 0.496 ± 0.035
Pl-ecoc 0.592 ± 0.037 0.635±0.016 0.528± 0.033 0.065 ± 0.021 0.072 ± 0.038 0.352 ± 0.039 0.697±0.031 0.058 ± 0.012
Pl-ecoc-Delin 0.666 ± 0.037 0.669± 0.013 0.719±0.027 0.608 ± 0.046 0.464 ± 0.042 0.550 ± 0.033 0.851± 0.013 0.527 ± 0.033
Pl-ecoc-Delinκ 0.598 ± 0.040 681±0.013 0.729± 0.021 0.693 ±0.031 0.524 ± 0.021 0.683 ± 0.024 0.920 ± 0.007 0.559 ± 0.030
Ipal 0.642 ±0.020 0.598±0.019 0.417±0.023 0.105 ± 0.062 0.062 ±0.017 0.309± 0.030 0.905± 0.009 0.144 ±0.015
Ipal-Delin 0.640 ±0.037 0.610±0.019 0.694±0.027 0.610 ± 0.048 0.463 ±0.044 0.550 ± 0.027 0.880±0.011 0.531 ±0.034
Ipal-Delinκ 0.619 ±0.026 0.624±0.015 0.709±0.031 0.663 ± 0.044 0.524 ±0.021 0.668± 0.032 0.943±0.005 0.563 ± 0.029

r = 2 (two false positive labels)
Pl-knn 0.623 ±0.023 0.379±0.016 0.160±0.020 0.021±0.009 0.027 ±0.014 0.162 ±0.012 0.290±0.015 0.015 ± 0.007
Pl-knn-Delin 0.665 ±0.036 0.650±0.013 0.668±0.018 0.466 ±0.021 0.258±0.042 0.486 ±0.033 0.842± 0.018 0.392 ±0.022
Pl-knn-Delinκ 0.628 ± 0.020 0.659±0.007 0.655±0.021 0.589 ±0.040 0.365± 0.043 0.560±0.020 0.911 ±0.009 0.415 ± 0.025
Pl-svm 0.490 ±0.041 0.631±0.039 0.575± 0.029 0.073 ± 0.021 0.035 ±0.019 0.261±0.019 0.640±0.015 0.054 ± 0.011
Pl-svm-Delin 0.608 ± 0.016 0.668±0.016 0.687± 0.024 0.438 ±0.023 0.220±0.038 0.504 ± 0.030 0.686±0.015 0.373± 0.022
Pl-svm-Delinκ 0.536 ± 0.029 0.677 ±0.009 0.666±0.025 0.639± 0.040 0.324 ± 0.039 0.585 ± 0.018 0.695± 0.018 0.381 ±0.023
Pl-ecoc 0.514 ± 0.036 0.584±0.027 0.428±0.035 0.040 ±0.016 0.063 ± 0.034 0.284 ±0.035 0.601±0.037 0.036±0.009
Pl-ecoc-Delin 0.598 ±0.039 0.653±0.017 0.688±0.023 0.466 ± 0.022 0.253 ±0.039 0.495 ± 0.033 0.818±0.013 0.390±0.022
Pl-ecoc-Delinκ 0.552 ±0.043 0.661±0.013 0.672±0.022 0.649 ± 0.037 0.365 ± 0.044 0.572 ± 0.021 0.887±0.008 0.413 ± 0.026
Ipal 0.592 ± 0.023 0.583±0.009 0.402± 0.025 0.088 ± 0.020 0.052 ± 0.011 0.304 ±0.018 0.901± 0.008 0.136 ±0.009
Ipal-Delin 0.597 ± 0.030 0.606± 0.018 0.664±0.023 0.468 ± 0.021 0.258 ±0.042 0.499 ± 0.038 0.863± 0.013 0.392± 0.022
Ipal-Delinκ 0.565 ± 0.021 0.613±0.012 0.653± 0.021 0.681 ± 0.061 0.368 ± 0.043 0.564 ± 0.017 0.922± 0.008 0.415 ± 0.025

r = 3 (three false positive labels)
Pl-knn 0.598 ± 0.017 0.364±0.011 0.165± 0.030 0.021 ± 0.008 0.043 ± 0.022 0.140±0.012 0.292±0.021 0.017± 0.005
Pl-knn-Delin 0.656 ±0.022 0.627±0.013 0.642±0.033 0.347 ±0.027 0.198 ± 0.035 0.437 ±0.037 0.824± 0.012 0.295 ± 0.018
Pl-knn-Delinκ 0.592 ± 0.019 0.639±0.015 0.610±0.033 0.525 ±0.037 0.244 ±0.033 0.521 ± 0.037 0.896± 0.010 0.318 ± 0.019
Pl-svm 0.471±0.039 0.619±0.035 0.562±0.038 0.055±0.019 0.038±0.020 0.247 ± 0.028 0.603±0.019 0.047± 0.008
Pl-svm-Delin 0.602 ± 0.031 0.659±0.018 0.667±0.035 0.309 ± 0.030 0.158 ±0.032 0.452 ± 0.040 0.641±0.021 0.273 ± 0.019
Pl-svm-Delinκ 0.501 ±0.037 0.669±0.019 0.637±0.028 0.587 ±0.038 0.214 ± 0.027 0.540 ± 0.041 0.675 ± 0.015 0.274±0.018
Pl-ecoc 0.101 ± 0.024 0.568±0.021 0.373±0.039 0.031±0.017 0.063 ±0.036 0.203±0.043 0.492±0.043 0.020 ± 0.007
Pl-ecoc-Delin 0.231 ±0.113 0.576±0.033 0.645±0.035 0.346 ± 0.026 0.188 ±0.032 0.443 ±0.036 0.762±0.022 0.293 ± 0.017
Pl-ecoc-Delinκ 0.109 ± 0.026 0.594±0.040 0.618± 0.032 0.533 ± 0.037 0.244±0.033 0.539 ± 0.033 0.830± 0.018 0.315±0.021
Ipal 0.525 ±0.024 0.557±0.016 0.373± 0.030 0.084 ± 0.024 0.044± 0.015 0.293 ± 0.042 0.892±0.009 0.133 ± 0.013
Ipal-Delin 0.564 ± 0.026 0.593±0.013 0.639±0.038 0.349 ± 0.027 0.197 ±0.036 0.447 ±0.032 0.840± 0.019 0.294 ±0.017
Ipal-Delinκ 0.512 ± 0.028 0.602±0.015 0.606± 0.034 0.644± 0.033 0.244± 0.033 0.539 ±0.035 0.911± 0.010 0.318 ±0.019

Table 4. Win/tie/loss counts (pairwise t-test at 0.05 significance level) between A-Delin (A-Delinκ ) and A in terms of di�erent
number of false positive labels (r = 1, 2, 3).

A-Delin against A A-Delinκ against A
A=Pl-knn A= Pl-svm A=Pl-ecoc A=Ipal A=Pl-knn A= Pl-svm A= Pl-ecoc A=Ipal

r = 1 8/0/0 8/0/0 8/0/0 6/1/1 8/0/0 8/0/0 8/0/0 7/0/1
r = 2 8/0/0 8/0/0 8/0/0 6/1/1 8/0/0 8/0/0 8/0/0 7/0/1
r = 3 8/0/0 8/0/0 8/0/0 7/0/1 7/0/1 8/0/0 8/0/0 7/0/1

In Total 24/0/0 24/0/0 24/0/0 19/2/3 23/0/1 24/0/0 24/0/0 21/0/3

• For Pl-knn, the coupling versions Pl-knn-Delin and Pl-knn-Delinκ signi�cantly outperform Pl-knn in 100%

and 95.8% cases respectively (Table 4). Speci�cally, on tmc2007where Pl-knn has the second highest classi�ca-

tion accuracy, the classi�cation accuracy has been improved with Delin by 0.252, 0.271 and 0.263 (with Delinκ

by 0.263, 0.280 and 0.275) for r = 1, 2 and 3 respectively. For sector on which Pl-knn has the lowest predictive

accuracy, the performance improvement is even more pronounced with Delin by an increase of 0.516, 0.377 and

0.278 (with Delinκ by an increase of 0.548, 0.400 and 0.301) for r = 1, 2 and 3 respectively. And in most cases, the
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e�ect of Delinκ is more signi�cant than Delin. For example, on amazon with r = 2 and 3, the improvement of

classi�cation accuracy brought by Delinκ for Pl-knn is 0.123 and 0.178 higher than that of Delin respectively.

• For both Pl-svm and Pl-ecoc, their performance have been signi�cantly improved by Delin and Delinκ in

all cases (Table 4). On the �ve data sets with more than 1,300 features (i.e. amazon, DeliciousMIL, bookmark,

sports and sector), out of the 30 statistical comparisons (2 PL learning algorithms x 5 data sets x 3 settings

of r ), the classi�cation accuracy has been improved with Delin by more than 0.20 in 22 cases (with Delinκ by

more than 0.20 in 25 cases). These results indicate that the bene�ts brought by Delin as well as Delinκ are

rather noticeable under the challenging circumstances of high dimensionality.

• For Ipal, the coupling version Ipal-Delin is outperformed by Ipal on sports which has largest number of

examples, and the other coupling version Ipal-Delinκ is outperformed by Ipal on mediamill which has least

number of features and class labels (Table 3). Nonetheless, on the two data sets amazon and DeliciousMILwith

least number of examples, the classi�cation accuracy has been improved with Delin by more than 0.40, 0.20

and 0.15 (with Delinκ by more than 0.45, 0.30 and 0.20) for r = 1, 2 and 3 respectively. These results indicate

that the bene�ts brought by Delin as well as Delinκ are rather noticeable under the challenging circumstances

of insu�cient training examples.
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Fig. 1. Classification accuracy of each partial label learning algorithm on real-world data sets (green bar : original algorithm; blue
bar : coupled with Delin; red bar : coupled with Delinκ ).

4.3 Real-World Data Sets

Characteristics of the real-world partial label data sets are summarized in Table 5, which are collected from di�er-

ent task domains including FG-NET [32] for facial age estimation, Lost [11], Soccer Player [51] and Yahoo! News

[18] for automatic face naming from images or videos, Mirflickr [19] for web image classi�cation, and English[56],
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Malagasy[12], Italian[56] for part-of-speech (POS) tagging.4 For facial age estimation, instances correspond to hu-

man faces with landmarks while candidate labels correspond to ages annotations given by crowdsourced labelers. For

automatic face naming, instances correspond to faces cropped from an image or video frame while candidate labels

correspond to names extracted from the associated captions or subtitles. For web image classi�cation, instances corre-

spond to web images while candidate labels correspond to annotations extracted from the web environment. For POS

tagging, instances correspond to the target words with contextual features while candidate labels correspond to the

part-of-speech tags that the target words may have.

On each real-world data set, the classi�cation accuracy of each partial label learning algorithm before and after

employing the proposed dimensionality reduction techniques is illustrated in Fig. 1. Furthermore, to show whether

the performance di�erence between A-Delin (A-Delinκ ) and A is signi�cant, pairwise t-test at 0.05 signi�cance

level is conducted where the win/tie/loss statistics are reported in Table 6.

Based on the reported results on real-world data sets, we can observe that:

• Out of the 32 statistical comparisons (4 PL learning algorithms x 8 data sets), the classi�cation accuracy of partial

label learning algorithm A has been signi�cantly improved in 71.8% and 84.3% cases by employing Delin and

Delinκ for dimensionality reduction respectively (Table 6). The six losses of A-Delin against A take place on

data sets English, Malagasy and Italian from the POS tagging task domain (Fig. 1(f)-(h)), while on the other

task domains A-Delin achieves superior or at least statistically comparable performance against A. The only

two losses of A-Delinκ againstA take place on data set Lost (A = Pl-svm) with least number of features and

Italian (A = Pl-ecoc) with small average number of candidate labels, while on the other cases A-Delinκ

achieves superior or at least statistically comparable performance against A.

• As shown in Fig. 1(a), the performance improvement of A-Delin against A is apparently higher than that of

A-Delinκ on the Lost data set, which has least number of features and small number of class labels in the label

space. This indicates that it would be preferred to utilize the proposed dimensionality reduction approach in

linear mode (i.e. Delin) rather than kernelized mode (i.e. Delinκ ) for data sets with lower dimensionality and

smaller label space.

• As shown in Fig. 1(c), the performance improvement of both A-Delin and A-Delinκ against A is rather pro-

nounced on the FG-NET data set, which is challenging to handle with least number of examples but large average

number of candidate labels. Impressively, the classi�cation accuracy of each partial label learning algorithm has

at least been doubled on FG-NET by coupling with Delin and Delinκ . These results indicate that the bene�ts

brought by Delin as well as Delinκ are rather noticeable under the challenging circumstances of insu�cient

training examples and high rate of false positive labels.

• As shown in Fig. 1(e), the performance improvement of A-Delinκ against A is apparently higher than that

of A-Delin on the Mirflickr data set, which has largest number of features. This indicates that it would be

preferred to utilize the proposed dimensionality reduction approach in kernelized mode (i.e. Delinκ ) rather

than linear mode (i.e. Delin) for data sets with high dimensionality.

4.4 Further Analysis

4.4.1 E�ect of Reduced Dimensionality. For the proposed dimensionality reduction approach (Table 1), the key

parameter corresponds to the number of retained features in the LDA-induced feature space (i.e. d ′). Following the

4Data sets available at: http://palm.seu.edu.cn/zhangml/Resources. htm#partial_data
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Table 5. Characteristics of the real-world experimental data sets.

Data Set # Examples # Features # Class Labels average # Candidate Labels Task Domain
Lost 1,122 108 16 2.23 automatic face naming [11]

Yahoo! News 22,991 163 219 1.91 automatic face naming [18]
FG-NET 1,002 262 78 7.48 facial age estimation [32]

Soccer Player 17,472 279 171 2.09 automatic face naming [51]
Mir�ickr 2,780 1,536 14 2.76 web image classi�cation [19]
English 24,000 300 45 1.19 POS tagging [56]
Malagasy 5,303 384 44 8.35 POS tagging [56]
Italian 21,878 519 90 1.60 POS tagging[56]

Table 6. Win/tie/loss statistics (pairwise t-test at 0.05 significance level) between A-Delin (A-Delinκ ) and A on real-world data
sets.

Data Set
A-Delin against A A-Delinκ against A

A=Pl-knn A= Pl-svm A=Pl-ecoc A=Ipal A=Pl-knn A= Pl-svm A= Pl-ecoc A=Ipal
Lost win win win win win loss win win

Yahoo! News win tie win win tie win win tie
FG-NET win win win win win win win win

Soccer Player tie win win win win win win win
Mir�ickr win win win win win win win win
English win loss tie win win win win win
Malagasy win win loss loss win win win win
Italian loss loss loss win win tie loss win

In Total 6/1/1 5/1/2 5/1/2 7/0/1 7/1/0 6/1/1 7/0/1 7/1/0
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Fig. 2. Classification accuracy of A-Delin (A ∈{Pl-knn, Pl-svm, Pl-ecoc, Ipal}) changes as the number of nearest neighbors used for
candidate label disambiguation (i.e. k ) increases from 3 to 10 with step-size 1. (a) synthetic data set slashdot (r = 2); (b) real-world
data set Lost; (c) real-world data set Mirflickr.

common practice of multi-class classi�cation with LDA [16, 30], we set d ′ = dthr ∙ min(q,d)e with thr ∈ (0, 1) which

is less than q (# class labels) as well as d (# original features).

Tables 7 and 8 report the detailed experimental results of coupling Delin and Delinκ with each partial label learning

algorithm on all real-world data sets respectively with varying number of retained features. Here, thr increases from

0.5 to 0.9 with step-size 0.1 and the best performance across di�erent values of thr is shown in boldface. As shown

in Tables 7 and 8, the performance of each partial label learning algorithm coupled with Delin or Delinκ �uctuates

moderately as the value of thr changes. Speci�cally, there is no single value of thr which can consistently lead to best
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Table 7. Classification accuracy of A-Delin (A ∈{Pl-knn, Pl-svm, Pl-ecoc, Ipal}) changes as the number of retained features varies
(d ′ = dthr ∙min(q, d )e with thr increasing from 0.5 to 0.9 with step-size 0.1). On each data set, the best performance across di�erent
values of thr is shown in boldface. For reference purpose, the classification accuracy of A on the original feature space is also shown
in the lower part of the table.

Data Set thr # Retained Features Pl-knn-Delin Pl-svm-Delin Pl-ecoc-Delin Ipal-Delin

Lost

0.5 8 0.790±0.050 0.790±0.051 0.794±0.046 0.792±0.049
0.6 10 0.784±0.031 0.787±0.035 0.814±0.046 0.812±0.046
0.7 12 0.808±0.046 0.813±0.046 0.842±0.050 0.833±0.051
0.8 13 0.823±0.045 0.822±0.044 0.845±0.043 0.858±0.051
0.9 15 0.790±0.027 0.790±0.032 0.819±0.039 0.823±0.039

Yahoo! News

0.5 82 0.475±0.006 0.509±0.008 0.639±0.007 0.671±0.005
0.6 98 0.455±0.009 0.515±0.010 0.635±0.007 0.672±0.006
0.7 115 0.437±0.007 0.517±0.011 0.628±0.007 0.671±0.004
0.8 131 0.424±0.004 0.518±0.009 0.621±0.008 0.667±0.007
0.9 147 0.413±0.005 0.518±0.009 0.615±0.009 0.666±0.005

FG-NET

0.5 39 0.128±0.032 0.115±0.030 0.076±0.028 0.143±0.036
0.6 47 0.120±0.011 0.119±0.027 0.082±0.035 0.144±0.037
0.7 55 0.090±0.031 0.116±0.036 0.067±0.029 0.114±0.040
0.8 63 0.090±0.023 0.122±0.031 0.079±0.032 0.128±0.016
0.9 71 0.074±0.025 0.119±0.031 0.066±0.029 0.132±0.019

Soccer Player

0.5 86 0.497±0.013 0.445±0.027 0.323±0.062 0.556±0.015
0.6 103 0.497±0.012 0.448±0.033 0.360±0.054 0.555±0.012
0.7 120 0.494±0.014 0.449±0.043 0.288±0.072 0.554±0.013
0.8 137 0.493±0.013 0.450±0.039 0.297±0.065 0.554±0.013
0.9 154 0.494±0.014 0.435±0.049 0.287±0.074 0.552±0.013

Mir�ickr

0.5 7 0.579±0.077 0.504±0.159 0.507±0.132 0.538±0.099
0.6 9 0.593±0.011 0.533±0.134 0.583±0.118 0.601±0.115
0.7 10 0.523±0.117 0.543±0.100 0.526±0.113 0.534±0.105
0.8 12 0.501±0.120 0.554±0.097 0.512±0.126 0.513±0.122
0.9 13 0.499±0.106 0.555±0.085 0.523±0.101 0.513±0.106

English

0.5 23 0.438±0.039 0.545±0.021 0.660±0.034 0.684±0.029
0.6 27 0.434±0.041 0.536±0.029 0.663±0.025 0.682±0.025
0.7 32 0.432±0.040 0.532±0.026 0.677±0.021 0.681±0.026
0.8 36 0.433±0.039 0.571±0.041 0.678±0.027 0.680±0.026
0.9 41 0.423±0.040 0.525±0.019 0.675±0.028 0.672±0.025

Malagasy

0.5 22 0.696±0.032 0.628±0.085 0.713±0.025 0.726±0.035
0.6 27 0.713±0.028 0.667±0.063 0.706±0.031 0.723±0.023
0.7 31 0.690±0.031 0.633±0.051 0.701±0.024 0.696±0.024
0.8 36 0.632±0.027 0.604±0.052 0.597±0.024 0.622±0.024
0.9 40 0.611±0.043 0.645±0.070 0.604±0.029 0.619±0.025

Italian

0.5 45 0.459±0.039 0.343±0.021 0.522±0.030 0.592±0.021
0.6 54 0.428±0.039 0.218±0.021 0.495±0.034 0.569±0.021
0.7 63 0.437±0.039 0.200±0.021 0.479±0.028 0.578±0.021
0.8 72 0.417±0.039 0.195±0.021 0.463±0.021 0.573±0.021
0.9 81 0.384±0.040 0.133±0.021 0.422±0.033 0.553±0.021

# Original Features Pl-knn Pl-svm Pl-ecoc Ipal
Lost - 108 0.358±0.029 0.734±0.004 0.638±0.051 0.726±0.041

Yahoo! News - 163 0.411±0.005 0.515±0.001 0.610±0.009 0.667±0.005
FG-NET - 262 0.030±0.019 0.055±0.024 0.013±0.015 0.059±0.019

Soccer Player - 279 0.492±0.014 0.408±0.043 0.186±0.064 0.548±0.014
Mir�ickr - 1,536 0.496±0.127 0.515±0.127 0.561±0.013 0.541±0.129
English - 300 0.347±0.036 0.705±0.025 0.699±0.027 0.635±0.027
Malagasy - 384 0.591±0.039 0.565±0.060 0.614±0.031 0.630±0.038
Italian - 519 0.450±0.019 0.619±0.023 0.632±0.032 0.560±0.031

performance. Therefore, we have �xed the value of thr to be 0.6 for comparative studies while Delin and Delinκ may

lead to further performance improvement by �ne-tuning the value of thr on training set.

4.4.2 E�ect of kNN-based Disambiguation. As shown in Table 1, another parameter for the proposed dimensionality

reduction approach corresponds to the number of nearest neighbors used for candidate label disambiguation (i.e. k).
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Table 8. Classification accuracy of A-Delinκ (A ∈{Pl-knn, Pl-svm, Pl-ecoc, Ipal}) changes as the number of retained features
varies (d ′ = dthr ∙ min(q, d )e with thr increasing from 0.5 to 0.9 with step-size 0.1). On each data set, the best performance across
di�erent values of thr is shown in boldface. For reference purpose, the classification accuracy of A on the original feature space is
also shown in the lower part of the table.

Data Set thr # Retained Features Pl-knn-Delinκ Pl-svm-Delinκ Pl-ecoc-Delinκ Ipal-Delinκ

Lost

0.5 8 0.674±0.049 0.639±0.051 0.714±0.073 0.689±0.057
0.6 10 0.677±0.051 0.657±0.048 0.739±0.059 0.737±0.036
0.7 12 0.679±0.049 0.668±0.062 0.739±0.065 0.749±0.054
0.8 13 0.672±0.057 0.682±0.048 0.748±0.052 0.753±0.052
0.9 15 0.663±0.057 0.672±0.062 0.745±0.054 0.759±0.043

Yahoo! News

0.5 82 0.465±0.008 0.508±0.013 0.640±0.004 0.666±0.005
0.6 98 0.441±0.008 0.515±0.009 0.632±0.006 0.673±0.006
0.7 115 0.426±0.009 0.518±0.010 0.628±0.006 0.669±0.006
0.8 131 0.412±0.005 0.520±0.008 0.621±0.008 0.666±0.005
0.9 147 0.403±0.006 0.519±0.009 0.613±0.007 0.665±0.006

FG-NET

0.5 39 0.122±0.020 0.130±0.031 0.064±0.032 0.139±0.021
0.6 47 0.106±0.017 0.098±0.035 0.070±0.030 0.138±0.049
0.7 55 0.102±0.025 0.114±0.022 0.055±0.027 0.111±0.029
0.8 63 0.083±0.039 0.106±0.024 0.067±0.035 0.122±0.029
0.9 71 0.099±0.034 0.112±0.022 0.059±0.028 0.124±0.031

Soccer Player

0.5 86 0.499±0.013 0.444±0.033 0.276±0.034 0.557±0.011
0.6 103 0.496±0.013 0.461±0.010 0.260±0.065 0.557±0.016
0.7 120 0.495±0.013 0.449±0.037 0.247±0.062 0.554±0.011
0.8 137 0.495±0.013 0.448±0.041 0.224±0.075 0.553±0.013
0.9 154 0.493±0.013 0.439±0.036 0.248±0.071 0.553±0.011

Mir�ickr

0.5 7 0.591±0.065 0.491±0.152 0.574±0.089 0.541±0.090
0.6 9 0.586±0.077 0.496±0.145 0.508±0.144 0.573±0.081
0.7 10 0.506±0.108 0.556±0.083 0.482±0.130 0.516±0.107
0.8 12 0.472±0.093 0.546±0.067 0.506±0.091 0.490±0.094
0.9 13 0.478±0.092 0.547±0.073 0.486±0.080 0.492±0.093

English

0.5 23 0.455±0.042 0.703±0.023 0.698±0.030 0.695±0.026
0.6 27 0.459±0.041 0.728±0.025 0.719±0.027 0.695±0.026
0.7 32 0.456±0.041 0.727±0.027 0.728±0.023 0.694±0.028
0.8 36 0.451±0.041 0.722±0.029 0.728±0.027 0.694±0.026
0.9 41 0.450±0.043 0.722±0.029 0.725±0.024 0.688±0.026

Malagasy

0.5 22 0.663±0.039 0.534±0.053 0.683±0.022 0.683±0.026
0.6 27 0.661±0.035 0.596±0.086 0.668±0.026 0.669±0.036
0.7 31 0.648±0.035 0.570±0.055 0.559±0.023 0.668±0.030
0.8 36 0.639±0.035 0.617±0.061 0.585±0.030 0.656±0.033
0.9 40 0.647±0.031 0.594±0.072 0.636±0.027 0.679±0.032

Italian

0.5 45 0.563±0.022 0.660±0.030 0.643±0.015 0.597±0.030
0.6 54 0.557±0.022 0.660±0.042 0.644±0.027 0.639±0.029
0.7 63 0.552±0.021 0.678±0.058 0.645±0.030 0.621±0.028
0.8 72 0.545±0.023 0.676±0.053 0.644±0.048 0.601±0.030
0.9 81 0.543±0.025 0.650±0.046 0.644±0.032 0.615±0.038

# Original Features Pl-knn Pl-svm Pl-ecoc Ipal
Lost - 108 0.358±0.029 0.734±0.004 0.638±0.051 0.726±0.041

Yahoo! News - 163 0.411±0.005 0.515±0.001 0.610±0.009 0.667±0.005
FG-NET - 262 0.030±0.019 0.055±0.024 0.013±0.015 0.059±0.019

Soccer Player - 279 0.492±0.014 0.408±0.043 0.186±0.064 0.548±0.014
Mir�ickr - 1,536 0.496±0.127 0.515±0.127 0.561±0.013 0.541±0.129
English - 300 0.347±0.036 0.705±0.025 0.699±0.027 0.635±0.027
Malagasy - 384 0.591±0.039 0.565±0.060 0.614±0.031 0.630±0.038
Italian - 519 0.450±0.019 0.619±0.023 0.632±0.032 0.560±0.031

For illustrative purpose, Figs. 2 and 3 show how the performance of each partial label learning algorithm coupled with

Delin and Delinκ changes respectively as k increases from 3 to 10 with step-size 1 on three data sets. As shown in

Figs. 2 and 3, the performance of each partial label learning algorithm coupled with Delin or Delinκ is relatively

stable as the value of k varies. Therefore, we have �xed the value of k to be 8 for comparative studies.
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Fig. 3. Classification accuracy of A-Delinκ (A ∈{Pl-knn, Pl-svm, Pl-ecoc, Ipal}) changes as the number of nearest neighbors
used for candidate label disambiguation (i.e. k ) increases from 3 to 10 with step-size 1. (a) synthetic data set slashdot (r = 2); (b)
real-world data set Lost; (c) real-world data set Mirflickr.

5 CONCLUSION

In this paper, an extension to our earlier work [45] is presentedwhich investigates the problem of dimensionality reduc-

tion for partial label learning. The proposed Delin approach enables LDA with the ability of dealing with partial label

data in an iterative manner, which alternates between optimizing the projection matrix of LDA with disambiguation-

guided labeling con�dences and kNN-based candidate label disambiguation in the projected feature space. Compre-

hensive experimental studies over synthetic as well as real-world data sets clearly show that the generalization per-

formance of well-established partial label learning algorithms can be signi�cantly improved by coupling with Delin

in either linear or kernelized mode.

Delin serves as an initial attempt towards partial label dimensionality reduction, it is important to explore other

ways of enhancing partial label learning algorithms with feature manipulation techniques [4, 40]. Other than the itera-

tive procedure, it is also interesting to investigate non-alternating procedure which can jointly perform dimensionality

reduction and candidate label disambiguation.
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